Highly transparent and conducting ITO/Ag/ITO multilayer thin films on FEP substrates for flexible electronics applications

Transparent and conducting ITO/Ag/ITO (IAI) multilayer coatings were deposited on glass and flexible fluorinated ethylene propylene (FEP) substrates by reactive sputtering using metallic In:Sn (90%:10%) and Ag targets at room temperature. Middle Ag layer thickness was optimized to obtain maximum fig...

Full description

Saved in:
Bibliographic Details
Published inSolar energy materials and solar cells Vol. 172; pp. 277 - 284
Main Authors Sibin, K.P., Srinivas, G., Shashikala, H.D., Dey, Arjun, Sridhara, N., Kumar Sharma, Anand, Barshilia, Harish C.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.12.2017
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Transparent and conducting ITO/Ag/ITO (IAI) multilayer coatings were deposited on glass and flexible fluorinated ethylene propylene (FEP) substrates by reactive sputtering using metallic In:Sn (90%:10%) and Ag targets at room temperature. Middle Ag layer thickness was optimized to obtain maximum figure of merit (ϕ) and the optimum Ag layer thickness was found to be ~13nm. The optimized IAI multilayer on glass substrate showed transmittance of ~88.6% and sheet resistance of ~7.1Ω/sq. The transmittance increased to ~91.4% for the IAI multilayer deposited on one side etched glass. The optimized IAI multilayer coating was also deposited on flexible FEP substrates. The electrical, optical, structural and morphological properties of IAI deposited on glass and FEP substrates were compared. IAI deposited on FEP substrate showed transmittance of ~90.2% at λ = 550nm, sheet resistance of ~6.9Ω/sq. and figure of merit of ~52 × 10−3Ω−1. Bending test of IAI deposited FEP proved the high flexibility of IAI multilayer for the flexible transparent electrode applications. Solar selectivity study of IAI on FEP substrate showed it can effectively reflect the higher wavelength region of solar spectrum and can be used as a flexible solar spectrum segregator. Optical haze measurements of IAI coated glass and FEP show that high haze value can be achieved by increasing the roughness on non-coated side of the FEP substrate. •ITO/Ag/ITO multilayer thin films were deposited on glass and FEP substrates by sputtering.•Optical, electrical, structural and mechanical properties were studied in detail.•Optimized ITO coating on FEP exhibits T of ~91% and RS of 6.9Ω/sq.•Optical haze of IAI/FEP can be tuned by etching the substrate.
ISSN:0927-0248
1879-3398
DOI:10.1016/j.solmat.2017.08.001