Progressive graph-based subspace transductive learning for semi-supervised classification

Graph-based transductive learning (GTL) is the efficient semi-supervised learning technique which is always employed in that sufficient labeled samples can not be obtained. Conventional GTL methods generally construct a inaccurate graph in feature domain and they are not able to align feature inform...

Full description

Saved in:
Bibliographic Details
Published inIET image processing Vol. 13; no. 14; pp. 2753 - 2762
Main Authors Chen, Long, Zhong, Zhi
Format Journal Article
LanguageEnglish
Published The Institution of Engineering and Technology 12.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Graph-based transductive learning (GTL) is the efficient semi-supervised learning technique which is always employed in that sufficient labeled samples can not be obtained. Conventional GTL methods generally construct a inaccurate graph in feature domain and they are not able to align feature information with label information. To address these issues, we propose an approach called Progressive Graph-based subspace transductive learning (PGSTL) in this paper. PGSTL gradually find the intrinsic relationship between samples that more accurately aligns feature with label. Meanwhile, PGSTL develops a feature affinity matrix in the subspace of original high-dimensional feature space, which effectively reduce the interference of noise points. And then, the representative relation matrix and the feature affinity matrix are optimized by iterative optimization strategy and finally aligned. In this way, PGSTL can not only effectively reduce the interference of noisy points, but also comprehensively consider the information in the feature and label domain of data. Extensive experimental results on various benchmark datasets demonstrate that the PGSTL achieves the best performance compared to some state-of-the-art semi-supervised learning methods.
ISSN:1751-9659
1751-9667
DOI:10.1049/iet-ipr.2018.6363