On Additive Binary Problems with Semiprime Numbers of a Specific Form
The paper is devoted to methods of solution of binary additive problems with semiprime numbers, which form sufficiently “rare” subsequences of the natural series. Additional conditions are imposed on these numbers; the main condition is belonging to so-called Vinogradov intervals. We solve two probl...
Saved in:
Published in | Journal of mathematical sciences (New York, N.Y.) Vol. 260; no. 2; pp. 175 - 193 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2022
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1072-3374 1573-8795 |
DOI | 10.1007/s10958-022-05682-6 |
Cover
Loading…
Summary: | The paper is devoted to methods of solution of binary additive problems with semiprime numbers, which form sufficiently “rare” subsequences of the natural series. Additional conditions are imposed on these numbers; the main condition is belonging to so-called Vinogradov intervals. We solve two problems that are analogs to the Titchmarsh divisor problem; namely, based on the Vinogradov method of trigonometric sums, we obtain asymptotic formulas for the number of solutions to Diophantine equations with semiprime numbers of a specific form. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-022-05682-6 |