Model predictive control for LPV models with maximal stabilizable model range

This paper characterizes model predictive control (MPC) for linear parameter varying (LPV) models subject to state and input constraints, which is based on the homogeneous polynomially parameterized (HPP) Lyapunov function and HPP control law with tunable complexity degrees. The controller guarantee...

Full description

Saved in:
Bibliographic Details
Published inAsian journal of control Vol. 22; no. 5; pp. 1940 - 1950
Main Authors Yang, Yuanqing, Ding, Baocang
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper characterizes model predictive control (MPC) for linear parameter varying (LPV) models subject to state and input constraints, which is based on the homogeneous polynomially parameterized (HPP) Lyapunov function and HPP control law with tunable complexity degrees. The controller guarantees the closed‐loop asymptotic stability and finds the control move through the convex optimization. While it is known that this technique can improve the control performance and reduce conservatism, we suggest that it also enlarges, and maximizes with the sufficiently large complexity degrees, the stabilizable LPV model range. The computational burden becomes heavier when the complexity degrees increase. However, the main contributions of this paper are more on theory than on practice. It explores to what extent robust MPC can be applied for stabilization of LPV models. Numerical examples are provided to illustrate the effectiveness of the proposed technique.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1561-8625
1934-6093
DOI:10.1002/asjc.2070