Chaotic breathers of two types in a two-dimensional Morse lattice with an on-site harmonic potential

Chaotic breathers of two types are generated in two-dimensional Morse lattices with on-site harmonic potentials. In both a triangular and a square configuration, initial highest-frequency ( π -mode) disturbances evolve into chaotic breathers. Depending on the magnitude of the parameters in the Morse...

Full description

Saved in:
Bibliographic Details
Published inPhysica. D Vol. 225; no. 2; pp. 184 - 196
Main Authors Ikeda, Kousuke, Doi, Yusuke, Feng, Bao-Feng, Kawahara, Takuji
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.01.2007
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Chaotic breathers of two types are generated in two-dimensional Morse lattices with on-site harmonic potentials. In both a triangular and a square configuration, initial highest-frequency ( π -mode) disturbances evolve into chaotic breathers. Depending on the magnitude of the parameters in the Morse potential, either quasi-one-dimensional localized chaotic breathers or two-dimensional localized (bell-shaped) ones are numerically observed when the on-site harmonic potential becomes significant. Both types of chaotic breather move irregularly within the lattice, and finally decay out into a thermalization state after a fairly long time. Quasi-one-dimensional localized chaotic breathers are favored as the strength of nonlinearity increases and they decay faster than two-dimensional localized ones.
ISSN:0167-2789
1872-8022
DOI:10.1016/j.physd.2006.10.017