A wearable brain-computer interface to play an endless runner game by self-paced motor imagery

Objective. A wearable brain–computer interface is proposed and validated experimentally in relation to the real-time control of an endless runner game by self-paced motor imagery(MI). Approach. Electroencephalographic signals were recorded via eight wet electrodes. The processing pipeline involved a...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 22; no. 2; pp. 26032 - 26047
Main Authors Arpaia, Pasquale, Esposito, Antonio, Galasso, Enza, Galdieri, Fortuna, Natalizio, Angela
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.04.2025
Subjects
Online AccessGet full text
ISSN1741-2560
1741-2552
1741-2552
DOI10.1088/1741-2552/adc205

Cover

Abstract Objective. A wearable brain–computer interface is proposed and validated experimentally in relation to the real-time control of an endless runner game by self-paced motor imagery(MI). Approach. Electroencephalographic signals were recorded via eight wet electrodes. The processing pipeline involved a filter-bank common spatial pattern approach and the combination of three binary classifiers exploiting linear discriminant analysis. This enabled the discrimination between imagining left-hand, right-hand, and no movement. Each mental task corresponded to an avatar horizontal motion within the game. Twenty-three healthy subjects participated to the experiments and their data are made publicly available. A custom metric was proposed to assess avatar control performance during the gaming phase. The game consisted of two levels, and after each, participants completed a questionnaire to self-assess their engagement and gaming experience. Main results. The mean classification accuracies resulted 73%, 73%, and 67% for left-rest, right-rest, and left-right discrimination, respectively. In the gaming phase, subjects with higher accuracies for left-rest and right-rest pair exhibited higher performance in terms of the custom metric. Correlation of the offline and real-time performance was investigated. The left-right MI did not correlate to the gaming phase performance due to the poor mean accuracy of the calibration. Finally, the engagement questionnaires revealed that level 1 and level 2 were not perceived as frustrating, despite the increasing difficulty. Significance. The work contributes to the development of wearable and self-paced interfaces for real-time control. These enhance user experience by guaranteeing a more natural interaction with respect to synchronous neural interfaces. Moving beyond benchmark datasets, the work paves the way to future applications on mobile devices for everyday use.
AbstractList Objective. A wearable brain–computer interface is proposed and validated experimentally in relation to the real-time control of an endless runner game by self-paced motor imagery(MI). Approach. Electroencephalographic signals were recorded via eight wet electrodes. The processing pipeline involved a filter-bank common spatial pattern approach and the combination of three binary classifiers exploiting linear discriminant analysis. This enabled the discrimination between imagining left-hand, right-hand, and no movement. Each mental task corresponded to an avatar horizontal motion within the game. Twenty-three healthy subjects participated to the experiments and their data are made publicly available. A custom metric was proposed to assess avatar control performance during the gaming phase. The game consisted of two levels, and after each, participants completed a questionnaire to self-assess their engagement and gaming experience. Main results. The mean classification accuracies resulted 73%, 73%, and 67% for left-rest, right-rest, and left-right discrimination, respectively. In the gaming phase, subjects with higher accuracies for left-rest and right-rest pair exhibited higher performance in terms of the custom metric. Correlation of the offline and real-time performance was investigated. The left-right MI did not correlate to the gaming phase performance due to the poor mean accuracy of the calibration. Finally, the engagement questionnaires revealed that level 1 and level 2 were not perceived as frustrating, despite the increasing difficulty. Significance. The work contributes to the development of wearable and self-paced interfaces for real-time control. These enhance user experience by guaranteeing a more natural interaction with respect to synchronous neural interfaces. Moving beyond benchmark datasets, the work paves the way to future applications on mobile devices for everyday use.
A wearable brain-computer interface is proposed and validated experimentally in relation to the real-time control of an endless runner game by self-paced motor imagery(MI). Electroencephalographic signals were recorded via eight wet electrodes. The processing pipeline involved a filter-bank common spatial pattern approach and the combination of three binary classifiers exploiting linear discriminant analysis. This enabled the discrimination between imagining left-hand, right-hand, and no movement. Each mental task corresponded to an avatar horizontal motion within the game. Twenty-three healthy subjects participated to the experiments and their data are made publicly available. A custom metric was proposed to assess avatar control performance during the gaming phase. The game consisted of two levels, and after each, participants completed a questionnaire to self-assess their engagement and gaming experience. The mean classification accuracies resulted 73%, 73%, and 67% for left-rest, right-rest, and left-right discrimination, respectively. In the gaming phase, subjects with higher accuracies for left-rest and right-rest pair exhibited higher performance in terms of the custom metric. Correlation of the offline and real-time performance was investigated. The left-right MI did not correlate to the gaming phase performance due to the poor mean accuracy of the calibration. Finally, the engagement questionnaires revealed that level 1 and level 2 were not perceived as frustrating, despite the increasing difficulty. The work contributes to the development of wearable and self-paced interfaces for real-time control. These enhance user experience by guaranteeing a more natural interaction with respect to synchronous neural interfaces. Moving beyond benchmark datasets, the work paves the way to future applications on mobile devices for everyday use.
Objective.A wearable brain-computer interface is proposed and validated experimentally in relation to the real-time control of an endless runner game by self-paced motor imagery(MI).Approach.Electroencephalographic signals were recorded via eight wet electrodes. The processing pipeline involved a filter-bank common spatial pattern approach and the combination of three binary classifiers exploiting linear discriminant analysis. This enabled the discrimination between imagining left-hand, right-hand, and no movement. Each mental task corresponded to an avatar horizontal motion within the game. Twenty-three healthy subjects participated to the experiments and their data are made publicly available. A custom metric was proposed to assess avatar control performance during the gaming phase. The game consisted of two levels, and after each, participants completed a questionnaire to self-assess their engagement and gaming experience.Main results.The mean classification accuracies resulted 73%, 73%, and 67% for left-rest, right-rest, and left-right discrimination, respectively. In the gaming phase, subjects with higher accuracies for left-rest and right-rest pair exhibited higher performance in terms of the custom metric. Correlation of the offline and real-time performance was investigated. The left-right MI did not correlate to the gaming phase performance due to the poor mean accuracy of the calibration. Finally, the engagement questionnaires revealed that level 1 and level 2 were not perceived as frustrating, despite the increasing difficulty.Significance.The work contributes to the development of wearable and self-paced interfaces for real-time control. These enhance user experience by guaranteeing a more natural interaction with respect to synchronous neural interfaces. Moving beyond benchmark datasets, the work paves the way to future applications on mobile devices for everyday use.Objective.A wearable brain-computer interface is proposed and validated experimentally in relation to the real-time control of an endless runner game by self-paced motor imagery(MI).Approach.Electroencephalographic signals were recorded via eight wet electrodes. The processing pipeline involved a filter-bank common spatial pattern approach and the combination of three binary classifiers exploiting linear discriminant analysis. This enabled the discrimination between imagining left-hand, right-hand, and no movement. Each mental task corresponded to an avatar horizontal motion within the game. Twenty-three healthy subjects participated to the experiments and their data are made publicly available. A custom metric was proposed to assess avatar control performance during the gaming phase. The game consisted of two levels, and after each, participants completed a questionnaire to self-assess their engagement and gaming experience.Main results.The mean classification accuracies resulted 73%, 73%, and 67% for left-rest, right-rest, and left-right discrimination, respectively. In the gaming phase, subjects with higher accuracies for left-rest and right-rest pair exhibited higher performance in terms of the custom metric. Correlation of the offline and real-time performance was investigated. The left-right MI did not correlate to the gaming phase performance due to the poor mean accuracy of the calibration. Finally, the engagement questionnaires revealed that level 1 and level 2 were not perceived as frustrating, despite the increasing difficulty.Significance.The work contributes to the development of wearable and self-paced interfaces for real-time control. These enhance user experience by guaranteeing a more natural interaction with respect to synchronous neural interfaces. Moving beyond benchmark datasets, the work paves the way to future applications on mobile devices for everyday use.
Author Esposito, Antonio
Natalizio, Angela
Galasso, Enza
Arpaia, Pasquale
Galdieri, Fortuna
Author_xml – sequence: 1
  givenname: Pasquale
  orcidid: 0000-0002-5192-5922
  surname: Arpaia
  fullname: Arpaia, Pasquale
  organization: Università degli Studi di Napoli Federico II Centro Interdipartimentale di Ricerca in Management Sanitario e Innovazione in Sanità (CIRMIS), Naples, Italy
– sequence: 2
  givenname: Antonio
  orcidid: 0000-0002-3761-2401
  surname: Esposito
  fullname: Esposito, Antonio
  organization: Università degli Studi di Napoli Federico II Department of Electrical Engineering and Information Technology (DIETI), Naples, Italy
– sequence: 3
  givenname: Enza
  orcidid: 0009-0002-0080-4546
  surname: Galasso
  fullname: Galasso, Enza
  organization: Università degli Studi di Napoli Federico II Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), Naples, Italy
– sequence: 4
  givenname: Fortuna
  orcidid: 0009-0001-3033-0794
  surname: Galdieri
  fullname: Galdieri, Fortuna
  organization: Università degli Studi di Napoli Federico II Department of Electrical Engineering and Information Technology (DIETI), Naples, Italy
– sequence: 5
  givenname: Angela
  orcidid: 0000-0001-6261-7741
  surname: Natalizio
  fullname: Natalizio, Angela
  organization: Polytechnic of Turin Department of Electronics and Telecommunications (DET), Turin, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40101362$$D View this record in MEDLINE/PubMed
BookMark eNp1kD1PwzAQhi1URD9gZ0IeGQi14zhJx6riS6rEAiuWY1-qVIkd7EQo_x5HKd1YzmfreU--Z4lmxhpA6JaSR0ryfE2zhEYx5_FaahUTfoEW56fZuU_JHC29PxLCaLYhV2ieEEooS-MF-triH5BOFjXgwsnKRMo2bd-Bw5UJtZQKcGdxW8sBS4PB6Bq8x643JjAH2YTcgD3UZdQGVuPGdjaEG3kAN1yjy1LWHm5O5wp9Pj997F6j_fvL2267jxRjrItKlXKSZ2VRMNAKOFGJLpRkeay03hRqE1Ou84RpxTMpWTLe0rLIAJjOeMzYCt1Pc1tnv3vwnWgqr6CupQHbexEWz3NGSJYG9O6E9kUDWrQu_NUN4s9JAMgEKGe9d1CeEUrEqF2MXsXoWEzaQ-RhilS2FUfbOxOW_R__BTZBg2Y
CODEN JNEOBH
Cites_doi 10.1109/TNSRE.2017.2766365
10.1038/18581
10.1088/1741-2552/ad200d
10.1109/TIM.2024.3384559
10.3390/s23031704
10.1088/1741-2552/ad6595
10.1016/j.actpsy.2020.103010
10.1016/j.measurement.2022.112304
10.1089/cyber.2017.29099.gri
10.3389/fnins.2012.00039
10.1109/TNSRE.2024.3356916
10.3389/fnsys.2021.578875
10.3390/s20247309
10.3389/fnins.2024.1381572
10.3389/fnbot.2020.00025
10.3390/s22093331
10.1109/TNSRE.2004.827220
10.1088/1741-2552/abee51
10.1016/j.csl.2013.11.004
10.1109/TNSRE.2024.3451010
10.1109/TCYB.2021.3122969
10.1109/TNSRE.2022.3230250
10.1109/10.871402
10.3390/brainsci10100696
10.1186/s12984-016-0173-2
10.1080/01431161.2018.1433343
10.9734/BJAST/2015/14975
10.1109/TBME.2006.888836
10.3390/s120201211
10.1016/j.compbiomed.2023.107254
10.1017/S0140525X00034026
10.1016/S1388-2457(02)00057-3
10.3390/s21062173
10.1016/j.compbiomed.2016.08.010
10.1186/s12984-022-01073-9
10.1016/j.jneumeth.2014.04.016
10.1088/1741-2552/ab260c
10.1080/00949655.2010.520163
10.1088/1741-2552/ad171a
10.1109/TNSRE.2020.2998123
10.1080/01621459.1965.10480811
10.1186/s12984-024-01342-9
10.1016/j.eij.2015.06.002
10.1016/s1388-2457(99)00141-8
10.1016/j.jphysparis.2006.03.012
10.1088/1741-2552/aace8c
10.1016/0028-3932(95)00073-C
10.3389/fnhum.2021.643386
10.1109/TNSRE.2003.814454
10.1016/j.measurement.2024.115167
10.1007/s10055-017-0328-x
10.1007/s11571-021-09779-7
10.1088/1741-2552/ac74e0
10.1016/j.clinph.2006.10.019
10.5281/zenodo.14850421
10.1016/j.artmed.2023.102738
ContentType Journal Article
Copyright 2025 The Author(s). Published by IOP Publishing Ltd
Creative Commons Attribution license.
Copyright_xml – notice: 2025 The Author(s). Published by IOP Publishing Ltd
– notice: Creative Commons Attribution license.
DBID O3W
TSCCA
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/1741-2552/adc205
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1741-2552
ExternalDocumentID 40101362
10_1088_1741_2552_adc205
jneadc205
Genre Journal Article
GrantInformation_xml – fundername: Ministry of University and Research
  grantid: PNRR PE15; CUP E63C22002050006
GroupedDBID ---
1JI
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
O3W
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
TSCCA
W28
XPP
AAYXX
ADEQX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AEINN
ID FETCH-LOGICAL-c333t-fc65087fbb3edce50c4dbca382cdd9bc9215d843dc57aa3415d86fb7ee3d75233
IEDL.DBID O3W
ISSN 1741-2560
1741-2552
IngestDate Fri Sep 05 14:44:20 EDT 2025
Fri May 16 02:48:36 EDT 2025
Tue Jul 01 05:12:25 EDT 2025
Tue Apr 01 22:47:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords gaming application
motor imagery
low-density EEG
self-paced BCI
real-time processing
wearability
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Creative Commons Attribution license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-fc65087fbb3edce50c4dbca382cdd9bc9215d843dc57aa3415d86fb7ee3d75233
Notes JNE-108455.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6261-7741
0009-0002-0080-4546
0000-0002-5192-5922
0000-0002-3761-2401
0009-0001-3033-0794
OpenAccessLink https://iopscience.iop.org/article/10.1088/1741-2552/adc205
PMID 40101362
PQID 3178830076
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_3178830076
pubmed_primary_40101362
crossref_primary_10_1088_1741_2552_adc205
iop_journals_10_1088_1741_2552_adc205
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAbbrev JNE
PublicationTitleAlternate J. Neural Eng
PublicationYear 2025
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Goldfeld (jneadc205bib64) 1965; 60
Singh (jneadc205bib20) 2021; 21
Pfurtscheller (jneadc205bib60) 1999; 110
Jeannerod (jneadc205bib1) 1994; 17
Jeannerod (jneadc205bib2) 1995; 33
Ang (jneadc205bib53) 2012; 6
Arpaia (jneadc205bib46) 2024
Arpaia (jneadc205bib56) 2023
Bashashati (jneadc205bib9) 2016
University of Naples Federico II (jneadc205bib49) 2025
Van der Maaten (jneadc205bib58) 2008; 9
Choi (jneadc205bib41) 2020; 28
Mason (jneadc205bib12) 2000; 47
Liu (jneadc205bib28) 2024; 237
Wang (jneadc205bib32) 2023; 147
Alchalabi (jneadc205bib19) 2021; 18
Ikarashi (jneadc205bib48) 2020; 10
Tsui (jneadc205bib14) 2007
Fatourechi (jneadc205bib50) 2007; 118
Nicolas-Alonso (jneadc205bib8) 2012; 12
Choi (jneadc205bib13) 2020; 20
Ko (jneadc205bib36) 2021; 15
Song (jneadc205bib34) 2022; 31
Arpaia (jneadc205bib65) 2022
Birbaumer (jneadc205bib4) 1999; 398
Kerous (jneadc205bib45) 2018; 22
Carrara (jneadc205bib17) 2024; 21
Yu (jneadc205bib44) 2016; 77
Dong (jneadc205bib22) 2022; 16
Conson (jneadc205bib47) 2020; 203
Mane (jneadc205bib33) 2020
Arpaia (jneadc205bib7) 2023; 206
Koo (jneadc205bib26) 2015; 244
Wolpaw (jneadc205bib5) 2002; 113
Townsend (jneadc205bib15) 2004; 12
Wang (jneadc205bib25) 2024; 73
Joshi (jneadc205bib52) 2015; 7
Cho (jneadc205bib16) 2021; 52
Yap (jneadc205bib63) 2011; 81
Värbu (jneadc205bib11) 2022; 22
Ferrero (jneadc205bib23) 2024; 21
Alois (jneadc205bib59) 2007
Rashid (jneadc205bib10) 2020; 14
Vourvopoulos (jneadc205bib40) 2016; 13
Korik (jneadc205bib21) 2022; 19
Natalizio (jneadc205bib51) 2024; 21
Luo (jneadc205bib39) 2023; 164
Pohjalainen (jneadc205bib54) 2015; 29
Arpaia (jneadc205bib67) 2023
Roy (jneadc205bib31) 2019; 16
Wu (jneadc205bib62) 2024; 32
Yu (jneadc205bib27) 2017; 25
Saha (jneadc205bib30) 2021; 15
Vidaurre (jneadc205bib18) 2007; 54
Lawhern (jneadc205bib66) 2018; 15
Lotze (jneadc205bib3) 2006; 99
Abdulkader (jneadc205bib55) 2015; 16
Riva (jneadc205bib42) 2019; 22
Maxwell (jneadc205bib57) 2018; 39
Coyle (jneadc205bib43) 2011
Yang (jneadc205bib24) 2023; 23
Meng (jneadc205bib29) 2024; 21
Zhuo (jneadc205bib38) 2024; 18
Pfurtscheller (jneadc205bib6) 2003; 11
El Ouahidi (jneadc205bib37) 2024; 32
Naser (jneadc205bib61) 2023
Arpaia (jneadc205bib35) 2022; 19
References_xml – volume: 25
  start-page: 2516
  year: 2017
  ident: jneadc205bib27
  article-title: Self-paced operation of a wheelchair based on a hybrid brain-computer interface combining motor imagery and p300 potential
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2766365
– start-page: pp 2950
  year: 2020
  ident: jneadc205bib33
  article-title: A multi-view CNN with novel variance layer for motor imagery brain computer interface
– volume: 398
  start-page: 297
  year: 1999
  ident: jneadc205bib4
  article-title: A spelling device for the paralysed
  publication-title: Nature
  doi: 10.1038/18581
– volume: 21
  year: 2024
  ident: jneadc205bib51
  article-title: Real-time estimation of EEG-based engagement in different tasks
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ad200d
– volume: 73
  year: 2024
  ident: jneadc205bib25
  article-title: Towards a fast and robust MI-BCI: online adaptation of stimulus paradigm and classification model
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2024.3384559
– volume: 23
  start-page: 1704
  year: 2023
  ident: jneadc205bib24
  article-title: Real-time navigation in google street view® using a motor imagery-based BCI
  publication-title: Sensors
  doi: 10.3390/s23031704
– volume: 21
  year: 2024
  ident: jneadc205bib29
  article-title: A model-based brain switch via periodic motor imagery modulation for asynchronous brain-computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ad6595
– volume: 203
  year: 2020
  ident: jneadc205bib47
  article-title: Sex differences in implicit motor imagery: evidence from the hand laterality task
  publication-title: Acta Psychol.
  doi: 10.1016/j.actpsy.2020.103010
– volume: 206
  year: 2023
  ident: jneadc205bib7
  article-title: Visual and haptic feedback in detecting motor imagery within a wearable brain–computer interface
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.112304
– start-page: pp 208
  year: 2024
  ident: jneadc205bib46
  article-title: Endless runner game in virtual reality controlled by a self-paced brain-computer interface based on EEG and motor imagery
– volume: 22
  start-page: 82
  year: 2019
  ident: jneadc205bib42
  article-title: Neuroscience of virtual reality: from virtual exposure to embodied medicine
  publication-title: Cyberpsychol., Behav. Soc. Netw.
  doi: 10.1089/cyber.2017.29099.gri
– volume: 6
  start-page: 39
  year: 2012
  ident: jneadc205bib53
  article-title: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2012.00039
– volume: 32
  start-page: 527
  year: 2024
  ident: jneadc205bib62
  article-title: Motor imagery classification for asynchronous EEG-based brain-computer interfaces
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2024.3356916
– start-page: pp 1063
  year: 2023
  ident: jneadc205bib67
  article-title: Sinc-EEGNet for improving performance while reducing calibration of a motor imagery-based BCI
– volume: 15
  year: 2021
  ident: jneadc205bib30
  article-title: Progress in brain computer interface: Challenges and opportunities
  publication-title: Front. Sys. Neurosci.
  doi: 10.3389/fnsys.2021.578875
– volume: 20
  start-page: 7309
  year: 2020
  ident: jneadc205bib13
  article-title: Developing a motor imagery-based real-time asynchronous hybrid BCI controller for a lower-limb exoskeleton
  publication-title: Sensors
  doi: 10.3390/s20247309
– volume: 18
  year: 2024
  ident: jneadc205bib38
  article-title: Riemannian transfer learning based on log-euclidean metric for EEG classification
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2024.1381572
– volume: 14
  start-page: 25
  year: 2020
  ident: jneadc205bib10
  article-title: Current status, challenges and possible solutions of EEG-based brain-computer interface: a comprehensive review
  publication-title: Front. Neurorobotics
  doi: 10.3389/fnbot.2020.00025
– volume: 22
  start-page: 3331
  year: 2022
  ident: jneadc205bib11
  article-title: Past, present and future of EEG-based BCI applications
  publication-title: Sensors
  doi: 10.3390/s22093331
– start-page: pp 125
  year: 2007
  ident: jneadc205bib14
  article-title: Asynchronous BCI control of a robot simulator with supervised online training
– volume: 12
  start-page: 258
  year: 2004
  ident: jneadc205bib15
  article-title: Continuous EEG classification during motor imagery-simulation of an asynchronous BCI
  publication-title: IEEE Trans. Neural Sys. Rehabil. Eng.
  doi: 10.1109/TNSRE.2004.827220
– year: 2007
  ident: jneadc205bib59
  article-title: evaluation criteria for bci research
– volume: 18
  year: 2021
  ident: jneadc205bib19
  article-title: A multi-modal modified feedback self-paced BCI to control the gait of an avatar
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abee51
– volume: 29
  start-page: 145
  year: 2015
  ident: jneadc205bib54
  article-title: Feature selection methods and their combinations in high-dimensional classification of speaker likability, intelligibility and personality traits
  publication-title: Comput. Speech Lang.
  doi: 10.1016/j.csl.2013.11.004
– start-page: pp 1
  year: 2023
  ident: jneadc205bib61
  article-title: Resting eeg state, an insight into motor imagery signal characteristics
– volume: 32
  start-page: 3338
  year: 2024
  ident: jneadc205bib37
  article-title: A strong and simple deep learning baseline for BCI motor imagery decoding
  publication-title: IEEE Trans. Neural Sys. Rehabil. Eng.
  doi: 10.1109/TNSRE.2024.3451010
– volume: 52
  start-page: 13279
  year: 2021
  ident: jneadc205bib16
  article-title: Neurograsp: real-time EEG classification of high-level motor imagery tasks using a dual-stage deep learning framework
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3122969
– volume: 31
  start-page: 710
  year: 2022
  ident: jneadc205bib34
  article-title: EEG conformer: convolutional transformer for EEG decoding and visualization
  publication-title: IEEE Trans. Neural Sys. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3230250
– volume: 47
  start-page: 1297
  year: 2000
  ident: jneadc205bib12
  article-title: A brain-controlled switch for asynchronous control applications
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.871402
– volume: 10
  start-page: 696
  year: 2020
  ident: jneadc205bib48
  article-title: Menstrual cycle modulates motor learning and memory consolidation in humans
  publication-title: Brain Sci.
  doi: 10.3390/brainsci10100696
– volume: 13
  start-page: 1
  year: 2016
  ident: jneadc205bib40
  article-title: Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/s12984-016-0173-2
– volume: 39
  start-page: 2784
  year: 2018
  ident: jneadc205bib57
  article-title: Implementation of machine-learning classification in remote sensing: an applied review
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2018.1433343
– volume: 7
  start-page: 396
  year: 2015
  ident: jneadc205bib52
  article-title: Likert scale: explored and explained
  publication-title: Br. J. Appl. Sci. Technol.
  doi: 10.9734/BJAST/2015/14975
– start-page: pp 01
  year: 2023
  ident: jneadc205bib56
  article-title: Online processing for motor imagery-based brain-computer interfaces relying on EEG
– volume: 54
  start-page: 550
  year: 2007
  ident: jneadc205bib18
  article-title: Study of on-line adaptive discriminant analysis for EEG-based brain computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.888836
– volume: 12
  start-page: 1211
  year: 2012
  ident: jneadc205bib8
  article-title: Brain computer interfaces, a review
  publication-title: Sensors
  doi: 10.3390/s120201211
– volume: 164
  year: 2023
  ident: jneadc205bib39
  article-title: A shallow mirror transformer for subject-independent motor imagery BCI
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2023.107254
– start-page: pp 1
  year: 2022
  ident: jneadc205bib65
  article-title: Comparing artifact removal techniques for daily-life electroencephalography with few channels
– volume: 17
  start-page: 187
  year: 1994
  ident: jneadc205bib1
  article-title: The representing brain: neural correlates of motor intention and imagery
  publication-title: Behav. Brain Sci.
  doi: 10.1017/S0140525X00034026
– volume: 113
  start-page: 767
  year: 2002
  ident: jneadc205bib5
  article-title: Brain–computer interfaces for communication and control
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(02)00057-3
– volume: 21
  start-page: 2173
  year: 2021
  ident: jneadc205bib20
  article-title: A comprehensive review on critical issues and possible solutions of motor imagery based electroencephalography brain-computer interface
  publication-title: Sensors
  doi: 10.3390/s21062173
– volume: 77
  start-page: 148
  year: 2016
  ident: jneadc205bib44
  article-title: Toward brain-actuated car applications: self-paced control with a motor imagery-based brain-computer interface
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.08.010
– volume: 19
  start-page: 95
  year: 2022
  ident: jneadc205bib21
  article-title: Competing at the cybathlon championship for people with disabilities: long-term motor imagery brain–computer interface training of a cybathlete who has tetraplegia
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/s12984-022-01073-9
– volume: 244
  start-page: 26
  year: 2015
  ident: jneadc205bib26
  article-title: A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2014.04.016
– volume: 16
  year: 2019
  ident: jneadc205bib31
  article-title: Deep learning-based electroencephalography analysis: a systematic review
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab260c
– volume: 81
  start-page: 2141
  year: 2011
  ident: jneadc205bib63
  article-title: Comparisons of various types of normality tests
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/00949655.2010.520163
– volume: 21
  year: 2024
  ident: jneadc205bib17
  article-title: Pseudo-online framework for BCI evaluation: a MOABB perspective using various MI and SSVEP datasets
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ad171a
– volume: 28
  start-page: 1614
  year: 2020
  ident: jneadc205bib41
  article-title: Observing actions through immersive virtual reality enhances motor imagery training
  publication-title: IEEE Trans. Neural Sys. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.2998123
– start-page: pp 939
  year: 2016
  ident: jneadc205bib9
  article-title: Neural network conditional random fields for self-paced brain computer interfaces
– volume: 60
  start-page: 539
  year: 1965
  ident: jneadc205bib64
  article-title: Some tests for homoscedasticity
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1965.10480811
– volume: 21
  start-page: 48
  year: 2024
  ident: jneadc205bib23
  article-title: Brain–machine interface based on deep learning to control asynchronously a lower-limb robotic exoskeleton: a case-of-study
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/s12984-024-01342-9
– volume: 16
  start-page: 213
  year: 2015
  ident: jneadc205bib55
  article-title: Brain computer interfacing: applications and challenges
  publication-title: Egypt. Inf. J.
  doi: 10.1016/j.eij.2015.06.002
– start-page: pp 1
  year: 2011
  ident: jneadc205bib43
  article-title: EEG-based continuous control of a game using a 3 channel motor imagery BCI: BCI game
– volume: 9
  start-page: 11
  year: 2008
  ident: jneadc205bib58
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 110
  start-page: 1842
  year: 1999
  ident: jneadc205bib60
  article-title: Event-related EEH/MEG synchronization and desynchronization: basic principles
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/s1388-2457(99)00141-8
– volume: 99
  start-page: 386
  year: 2006
  ident: jneadc205bib3
  article-title: Motor imagery
  publication-title: J. Phys. Paris
  doi: 10.1016/j.jphysparis.2006.03.012
– volume: 15
  year: 2018
  ident: jneadc205bib66
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aace8c
– volume: 33
  start-page: 1419
  year: 1995
  ident: jneadc205bib2
  article-title: Mental imagery in the motor context
  publication-title: Neuropsychologia
  doi: 10.1016/0028-3932(95)00073-C
– volume: 15
  year: 2021
  ident: jneadc205bib36
  article-title: A survey on deep learning-based short/zero-calibration approaches for EEG-based brain–computer interfaces
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2021.643386
– volume: 11
  start-page: 1
  year: 2003
  ident: jneadc205bib6
  article-title: Graz-BCI: state of the art and clinical applications
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2003.814454
– volume: 237
  year: 2024
  ident: jneadc205bib28
  article-title: A hybrid method for asynchronous detection of motor imagery electroencephalogram fusing alpha rhythm and movement-related cortical potential
  publication-title: Measurement
  doi: 10.1016/j.measurement.2024.115167
– volume: 22
  start-page: 119
  year: 2018
  ident: jneadc205bib45
  article-title: EEG-based BCI and video games: a progress report
  publication-title: Virtual Reality
  doi: 10.1007/s10055-017-0328-x
– volume: 16
  start-page: 1123
  year: 2022
  ident: jneadc205bib22
  article-title: A multi-modal brain–computer interface based on threshold discrimination and its application in wheelchair control
  publication-title: Cogn. Neurodynamics
  doi: 10.1007/s11571-021-09779-7
– volume: 19
  year: 2022
  ident: jneadc205bib35
  article-title: How to successfully classify EEG in motor imagery BCI: a metrological analysis of the state of the art
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ac74e0
– volume: 118
  start-page: 480
  year: 2007
  ident: jneadc205bib50
  article-title: EMG and EOG artifacts in brain computer interface systems: a survey
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2006.10.019
– year: 2025
  ident: jneadc205bib49
  article-title: Supplementary data associated with “A wearable brain-computer interface to play an endless runner game by self-paced motor imagery”
  publication-title: Zenodo
  doi: 10.5281/zenodo.14850421
– volume: 147
  year: 2023
  ident: jneadc205bib32
  article-title: An in-depth survey on deep learning-based motor imagery electroencephalogram (EEG) classification
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2023.102738
SSID ssj0031790
Score 2.4186234
Snippet Objective. A wearable brain–computer interface is proposed and validated experimentally in relation to the real-time control of an endless runner game by...
A wearable brain-computer interface is proposed and validated experimentally in relation to the real-time control of an endless runner game by self-paced motor...
Objective.A wearable brain-computer interface is proposed and validated experimentally in relation to the real-time control of an endless runner game by...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Publisher
StartPage 26032
SubjectTerms Adult
Brain-Computer Interfaces
Electroencephalography - instrumentation
Electroencephalography - methods
Female
gaming application
Humans
Imagination - physiology
low-density EEG
Male
motor imagery
Psychomotor Performance - physiology
real-time processing
Running - physiology
Running - psychology
self-paced BCI
Video Games
wearability
Wearable Electronic Devices
Young Adult
Title A wearable brain-computer interface to play an endless runner game by self-paced motor imagery
URI https://iopscience.iop.org/article/10.1088/1741-2552/adc205
https://www.ncbi.nlm.nih.gov/pubmed/40101362
https://www.proquest.com/docview/3178830076
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66XryIb9cXEVTwEG2bPrJ4WsRlFXwcFD1Z8vSy2y7bLtJ_70zbFQQVby0kTZlJMl8yM98Qcmy05bELFHNeFLGQC82USzTzfamCUCvtBCY4393Hw-fw9jV6XSCXX7kw-aTd-s_hsSEKbkTYBsSJC8DQPgMkHFxIowPkL13iIha4Kh_4y3wb5kg91WRDYuvYa32UP33hm01ahHF_h5u12RmskpUWL9J-83drZMFm62Sjn8FZeVzRU1pHcNZX4xvkrU8_YOJiMhRVWPqB6bZmA0VWiKmT2tIyp5ORrKjMqEWChaKg0xnW36Lvcgz9KlrYkWNwlLaGgh5z6DxGootqkzwPrp-uhqytn8A057xkTiP8SpxSHGM9I0-HRmnJRaCN6SndA3NvRMiNjhIpwZzBW-xUYi03CRxQ-RbpZHlmdwj1Q6uMTnyjDGaiSmklADOAN6HkXi8QXXI2l2A6aWgy0tq9LUSK0k5R2mkj7S45ARGn7Vop_mh3NFdCCnMeHRkys_msSEG3QnB0InbJdqOdr1FDJM0Dq7z7z1H2yHKAJX3rYJx90imnM3sAOKNUh2Tx5uHxsJ5Vn49yzN4
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF41QUJcEBAooUC3UkHisI3t9WNzjKBRCm3gQEROrPbJJbGt2FHlf8-M7SAh0YqbLXm81sx659udmW8IObfG8dRHmvkgSVjMhWHaZ4aFodJRbLTxAgucb5bpYhV_Xifrvs9pWwtTlP3SfwGXHVFwp8I-IU5MAEOHDJBwNFHWREEyKa0fkAcJTxMkz__KfxyWYo70U11FJEqkQR-n_Ndb_vJLAxj7bsjZup75E_K4x4x01n3hU3Lk8mdkNMthv7xt6HvaZnG2x-Mj8nNGb2HyYkEU1dj-gZm-bwNFZoidV8bRuqDlRjVU5dQhyUJV0d0ee3DRX2oLcg2t3MYz2E47S8GWBQhvkeyieU5W88vvHxes76HADOe8Zt4gBMu81hzzPZPAxFYbxUVkrJ1qMwWXb0XMrUkypcClwV3qdeYctxlsUvkLMsyL3L0kNIydtiYLrbZYjaqUUwDOAOLEigfTSIzJh4MGZdlRZcg2xC2ERG1L1LbstD0m70DFsv9fqnueOzsYQcK8x2CGyl2xryTYVgiOgcQxOe6s82fUGInzwDO_-s9RTsnDb5_m8vpq-eWEPIqww2-bm_OaDOvd3r0B2FHrt-3U-g2Ng8_N
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+wearable+brain-computer+interface+to+play+an+endless+runner+game+by+self-paced+motor+imagery&rft.jtitle=Journal+of+neural+engineering&rft.au=Arpaia%2C+Pasquale&rft.au=Esposito%2C+Antonio&rft.au=Galasso%2C+Enza&rft.au=Galdieri%2C+Fortuna&rft.date=2025-04-01&rft.eissn=1741-2552&rft.volume=22&rft.issue=2&rft_id=info:doi/10.1088%2F1741-2552%2Fadc205&rft_id=info%3Apmid%2F40101362&rft.externalDocID=40101362
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon