A wearable brain-computer interface to play an endless runner game by self-paced motor imagery
Objective. A wearable brain–computer interface is proposed and validated experimentally in relation to the real-time control of an endless runner game by self-paced motor imagery(MI). Approach. Electroencephalographic signals were recorded via eight wet electrodes. The processing pipeline involved a...
Saved in:
Published in | Journal of neural engineering Vol. 22; no. 2; pp. 26032 - 26047 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
01.04.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1741-2560 1741-2552 1741-2552 |
DOI | 10.1088/1741-2552/adc205 |
Cover
Summary: | Objective. A wearable brain–computer interface is proposed and validated experimentally in relation to the real-time control of an endless runner game by self-paced motor imagery(MI). Approach. Electroencephalographic signals were recorded via eight wet electrodes. The processing pipeline involved a filter-bank common spatial pattern approach and the combination of three binary classifiers exploiting linear discriminant analysis. This enabled the discrimination between imagining left-hand, right-hand, and no movement. Each mental task corresponded to an avatar horizontal motion within the game. Twenty-three healthy subjects participated to the experiments and their data are made publicly available. A custom metric was proposed to assess avatar control performance during the gaming phase. The game consisted of two levels, and after each, participants completed a questionnaire to self-assess their engagement and gaming experience. Main results. The mean classification accuracies resulted 73%, 73%, and 67% for left-rest, right-rest, and left-right discrimination, respectively. In the gaming phase, subjects with higher accuracies for left-rest and right-rest pair exhibited higher performance in terms of the custom metric. Correlation of the offline and real-time performance was investigated. The left-right MI did not correlate to the gaming phase performance due to the poor mean accuracy of the calibration. Finally, the engagement questionnaires revealed that level 1 and level 2 were not perceived as frustrating, despite the increasing difficulty. Significance. The work contributes to the development of wearable and self-paced interfaces for real-time control. These enhance user experience by guaranteeing a more natural interaction with respect to synchronous neural interfaces. Moving beyond benchmark datasets, the work paves the way to future applications on mobile devices for everyday use. |
---|---|
Bibliography: | JNE-108455.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1741-2560 1741-2552 1741-2552 |
DOI: | 10.1088/1741-2552/adc205 |