Savings based ant colony optimization for the capacitated minimum spanning tree problem

The problem of connecting a set of client nodes with known demands to a root node through a minimum cost tree network, subject to capacity constraints on all links is known as the capacitated minimum spanning tree (CMST) problem. As the problem is NP-hard, we propose a hybrid ant colony optimization...

Full description

Saved in:
Bibliographic Details
Published inComputers & operations research Vol. 33; no. 6; pp. 1794 - 1822
Main Authors REIMANN, Marc, LAUMANNS, Marco
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Science 01.06.2006
Pergamon Press Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The problem of connecting a set of client nodes with known demands to a root node through a minimum cost tree network, subject to capacity constraints on all links is known as the capacitated minimum spanning tree (CMST) problem. As the problem is NP-hard, we propose a hybrid ant colony optimization (ACO) algorithm to tackle it heuristically. The algorithm exploits two important problem characteristics: (i) the CMST problem is closely related to the capacitated vehicle routing problem (CVRP), and (ii) given a clustering of client nodes that satisfies capacity constraints, the solution is to find a MST for each cluster, which can be done exactly in polynomial time. Our ACO exploits these two characteristics of the CMST by a solution construction originally developed for the CVRP. Given the CVRP solution, we then apply an implementation of Prim's algorithm to each cluster to obtain a feasible CMST solution. Results from a comprehensive computational study indicate the efficiency and effectiveness of the proposed approach. [PUBLICATION ABSTRACT]
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0305-0548
1873-765X
0305-0548
DOI:10.1016/j.cor.2004.11.019