Incremental Text-to-Speech Synthesis Using Pseudo Lookahead With Large Pretrained Language Model

This letter presents an incremental text-to-speech (TTS) method that performs synthesis in small linguistic units while maintaining the naturalness of output speech. Incremental TTS is generally subject to a trade-off between latency and synthetic speech quality. It is challenging to produce high-qu...

Full description

Saved in:
Bibliographic Details
Published inIEEE signal processing letters Vol. 28; pp. 857 - 861
Main Authors Saeki, Takaaki, Takamichi, Shinnosuke, Saruwatari, Hiroshi
Format Journal Article
LanguageEnglish
Published New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1070-9908
1558-2361
DOI10.1109/LSP.2021.3073869

Cover

Loading…
More Information
Summary:This letter presents an incremental text-to-speech (TTS) method that performs synthesis in small linguistic units while maintaining the naturalness of output speech. Incremental TTS is generally subject to a trade-off between latency and synthetic speech quality. It is challenging to produce high-quality speech with a low-latency setup that does not make much use of an unobserved future sentence (hereafter, "lookahead"). To resolve this issue, we propose an incremental TTS method that uses a pseudo lookahead generated with a language model to take the future contextual information into account without increasing latency. Our method can be regarded as imitating a human's incremental reading and uses pretrained GPT2, which accounts for the large-scale linguistic knowledge, for the lookahead generation. Evaluation results show that our method 1) achieves higher speech quality than the method taking only observed information into account and 2) achieves a speech quality equivalent to waiting for the future context observation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2021.3073869