A Stabilization Framework for the Output Regulation of Rational Nonlinear Systems
A systematic stabilization approach is provided for systems whose regulation error dynamics is subject to rational nonlinearities given prior knowledge of the system zero-error steady-state condition and a proper internal model. The error dynamics is cast in a differential-algebraic form so as to ad...
Saved in:
Published in | IEEE transactions on automatic control Vol. 65; no. 11; pp. 4860 - 4865 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9286 1558-2523 |
DOI | 10.1109/TAC.2019.2959971 |
Cover
Summary: | A systematic stabilization approach is provided for systems whose regulation error dynamics is subject to rational nonlinearities given prior knowledge of the system zero-error steady-state condition and a proper internal model. The error dynamics is cast in a differential-algebraic form so as to address the synthesis of controller parameters by a numerical optimization problem subject to bilinear matrix inequality constraints. A particular case is also explored where the resulting constraints are linear matrix inequalities. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2019.2959971 |