Energy-Harvesting-Aided Spectrum Sensing and Data Transmission in Heterogeneous Cognitive Radio Sensor Network

The incorporation of cognitive radio (CR) and energy harvesting (EH) capabilities in wireless sensor networks enables spectrum and energy-efficient heterogeneous CR sensor networks (HCRSNs). The new networking paradigm of HCRSNs consists of EH-enabled spectrum sensors and battery-powered data sensor...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 66; no. 1; pp. 831 - 843
Main Authors Deyu Zhang, Zhigang Chen, Ju Ren, Ning Zhang, Awad, Mohamad Khattar, Haibo Zhou, Xuemin Sherman Shen
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The incorporation of cognitive radio (CR) and energy harvesting (EH) capabilities in wireless sensor networks enables spectrum and energy-efficient heterogeneous CR sensor networks (HCRSNs). The new networking paradigm of HCRSNs consists of EH-enabled spectrum sensors and battery-powered data sensors. Spectrum sensors can cooperatively scan the licensed spectrum for available channels, whereas data sensors monitor an area of interest and transmit sensed data to the sink over those channels. In this paper, we propose a resource-allocation solution for the HCRSN to achieve the sustainability of spectrum sensors and conserve the energy of data sensors. The proposed solution is achieved by two algorithms that operate in tandem: a spectrum sensor scheduling (SSS) algorithm and a data sensor resource allocation (DSRA) algorithm. The SSS algorithm allocates channels to spectrum sensors such that the average detected available time for the channels is maximized, while the EH dynamics are considered and primary user (PU) transmissions are protected. The DSRA algorithm allocates the transmission time, power, and channels such that the energy consumption of the data sensors is minimized. Extensive simulation results demonstrate that the energy consumption of the data sensors can be significantly reduced, while maintaining the sustainability of the spectrum sensors.
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2016.2551721