Linearized Bregman Iterations for Automatic Optical Fiber Fault Analysis
Supervision of the physical layer of optical networks is an extremely relevant subject. To detect fiber faults, single-ended solutions, such as the optical time-domain reflectometry (OTDR), allow for precise measurements of fault profiles. Combining the OTDR with a signal processing approach for hig...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 68; no. 10; pp. 3699 - 3711 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Supervision of the physical layer of optical networks is an extremely relevant subject. To detect fiber faults, single-ended solutions, such as the optical time-domain reflectometry (OTDR), allow for precise measurements of fault profiles. Combining the OTDR with a signal processing approach for high-dimensional sparse parameter estimation allows for automated and reliable results in reduced time. In this paper, a measurement system composed of a photon-counting OTDR data acquisition unit and a processing unit based on a linearized Bregman iterations' algorithm for automatic fault finding is proposed. An in-depth comparative study of the proposed algorithm's fault-finding prowess in the presence of noise is presented. Characteristics, such as sensitivity, specificity, processing time, and complexity, are analyzed in simulated environments. Real-life measurements that are conducted using the photon-counting OTDR subsystem for data acquisition and the linearized Bregman-based processing unit for automated data analysis demonstrated accurate results. It is concluded that the proposed measurement system is particularly well-suited to the task of fault finding. The natural characteristic of the algorithm fosters embedding the solution in digital hardware, allowing for reduced costs and processing time. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9456 1557-9662 |
DOI: | 10.1109/TIM.2018.2882258 |