Dopamine-modified poly(styrene) nanospheres as new high-speed adsorbents for copper-ions having enhanced smoke-toxicity-suppression and flame-retardancy

[Display omitted] Polydopamine-coated polystyrene (PS@PDA) nanospheres which are prepared by self-polymerizing of dopamine on the surfaces of polystyrene (PS) nanospheres show excellent Cu2+ adsorption capacity. The Cu2+ adsorption capacity of PS@PDA can even reach 178 mg/g in about 6 min, which is...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 582; pp. 619 - 630
Main Authors Jin, Ziyu, Xiao, Yuling, Xu, Zhoumei, Zhang, Zixuan, Wang, Huijuan, Mu, Xiaowei, Gui, Zhou
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] Polydopamine-coated polystyrene (PS@PDA) nanospheres which are prepared by self-polymerizing of dopamine on the surfaces of polystyrene (PS) nanospheres show excellent Cu2+ adsorption capacity. The Cu2+ adsorption capacity of PS@PDA can even reach 178 mg/g in about 6 min, which is superior to the other adsorption materials reported in literatures. Through linear fitting, it can be seen that Cu2+ is chemisorption covered by multilayers on the surface of PS@PDA, with less affect by temperature. The PS@PDA nanosphere with good adsorption capacity is first applied as the Cu2+ adsorbent and then recycled to preparation of PS nanocomposite with enhanced flame retardancy, great smoke and toxic gases suppression properties. To overcome the drawbacks of evaluation methods reported before, a new evaluation system of analytic hierarchy process is first applied to comprehensively analyze fire safety of samples. The average value of smoke production rate of PS@PDA absorbed 5 mg/L Cu2+ (PS 2) reduces by about 10%, and the average and total yield of carbon monoxide of PS 2 decrease by 15.7% and 18.1% compared with that of neat PS, respectively. PS 2 with the highest score of 86.75 has the best comprehensive fire safety performance among all samples. This work provides a guideline for green flame-retardant chemistry.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2020.08.077