Scalable Quadrature Spatial Modulation

We consider quadrature spatial modulation (QSM) schemes, which achieve high spectral efficiency (SE) via the dispersion of a relatively small number <inline-formula> <tex-math notation="LaTeX">P </tex-math></inline-formula> of <inline-formula> <tex-math not...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 21; no. 11; pp. 9293 - 9311
Main Authors Rou, Hyeon Seok, de Abreu, Giuseppe Thadeu Freitas, Iimori, Hiroki, G., David Gonzalez, Gonsa, Osvaldo
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We consider quadrature spatial modulation (QSM) schemes, which achieve high spectral efficiency (SE) via the dispersion of a relatively small number <inline-formula> <tex-math notation="LaTeX">P </tex-math></inline-formula> of <inline-formula> <tex-math notation="LaTeX">M </tex-math></inline-formula>-ary modulated symbols over a large number of combinations of <inline-formula> <tex-math notation="LaTeX">n_{T} </tex-math></inline-formula> transmit antennas and <inline-formula> <tex-math notation="LaTeX">T </tex-math></inline-formula> transmit instances. In particular, we design a new space-time block code (STBC)-based scalable QSM scheme combining high SE with maximum diversity and optimum coding gains. Deriving a closed-form expression for the optimum SE, we show that scaling the size <inline-formula> <tex-math notation="LaTeX">T </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">n_{T} </tex-math></inline-formula> not only is required to achieve SE optimality, but also results in further gains in bit error rate (BER) performance. Building on the latter optimal parameterization, a fully optimized scalable QSM (OS-QSM) transmitter design is then obtained by introducing a new dispersion matrix index selection algorithm that ensures even utilization of spatial-temporal resources. Finally, a new greedy boxed iterative shrinkage thresholding algorithm (GB-ISTA) QSM receiver is proposed, which exploits the inherent sparsity of QSM signals and while detecting spatially and digitally modulated bits in a greedy fashion. The resulting low complexity of the new receiver, which is linear on <inline-formula> <tex-math notation="LaTeX">n_{T} </tex-math></inline-formula>, enables the utilization of OS-QSM in systems of previously prohibitive dimensions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2022.3175579