Photothermal responsive slippery surfaces based on laser-structured graphene@PVDF composites
[Display omitted] Photothermal responsive slippery surfaces with switchable superwettability are promising in the fields of biomedicine, self-cleaning, anti-corrosion, and lab-on-a-chip systems. However, the development of a light switchable slippery surface that combines high-performance phototherm...
Saved in:
Published in | Journal of colloid and interface science Vol. 629; pp. 582 - 592 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | [Display omitted]
Photothermal responsive slippery surfaces with switchable superwettability are promising in the fields of biomedicine, self-cleaning, anti-corrosion, and lab-on-a-chip systems. However, the development of a light switchable slippery surface that combines high-performance photothermal materials with hierarchical microstructures of special orientation remains challenging, which limits the applications in anisotropic droplet manipulation. Herein, we demonstrate a photothermal responsive slippery surface based on laser-structured graphene and polyvinylidene difluoride composites (L-G@PVDF) for controllable droplet manipulation. The L-G@PVDF film exhibits high light absorption (∼95.4%) in the visible and NIR region. After lubricating with paraffin, the resultant surface shows excellent self-healing ability and light-responsive wettability change due to the photothermal effect of L-G@PVDF and the hot melting effect of paraffin. Additionally, by introducing anisotropic grooved structures, the paraffin-infused L-G@PVDF surface displays anisotropic wettability that further affects droplet manipulation under light irradiation. Also, the photothermal responsive slippery property endows the paraffin-infused L-G@PVDF surface with excellent anti-frosting and de-icing capability. Moreover, the smart paraffin-infused L-G@PVDF surface can be combined with a microfluidics chip for light-driven automatic sampling. This study offers insight into the rational design of photothermal responsive slippery surfaces for controllable droplet manipulation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2022.08.153 |