3D Bevel-Tip Needle Insertion Trajectory Planning via Computational Optimal Control
Manual insertion of flexible bevel-tip needles often leads to unpredictable tissue deformation and compromised targeting accuracy, emphasizing the need for robust trajectory planning. To address this challenge, we formulate the insertion problem as a time-energy optimal control problem (OCP) subject...
Saved in:
Published in | IEEE access Vol. 13; pp. 107657 - 107668 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Manual insertion of flexible bevel-tip needles often leads to unpredictable tissue deformation and compromised targeting accuracy, emphasizing the need for robust trajectory planning. To address this challenge, we formulate the insertion problem as a time-energy optimal control problem (OCP) subject to nonlinear kinematic and collision-avoidance constraints. Due to its large-scale and nonconvex nature, directly solving the nominal OCP is difficult. Instead, we first obtain a coarse collision-free trajectory via <inline-formula> <tex-math notation="LaTeX">{\mathrm {A}}^{\ast } </tex-math></inline-formula> search in the abstracted 3D workspace. Next, we create spatiotemporal safe corridors around this trajectory, replace the nominal collision-avoidance constraints with corridor-based constraints, and iteratively relax the kinematic equations as external penalties to refine feasibility. The refined solution subsequently warm-starts a final solve of the nominal OCP with strict kinematic constraints and reduced-scale collision-avoidance constraints. Simulations confirm that our proposed optimization-based trajectory planner converges reliably to numerically optimal needle trajectories, surpassing existing optimization-based trajectory planners in modeling accuracy, solution robustness, and efficiency. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2025.3580645 |