Using Human Ratings for Feedback Control: A Supervised Learning Approach With Application to Rehabilitation Robotics

This article presents a method for tailoring a parametric controller based on human ratings. The method leverages supervised learning concepts in order to train a reward model from data. It is applied to a gait rehabilitation robot with the goal of teaching the robot how to walk patients physiologic...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on robotics Vol. 36; no. 3; pp. 789 - 801
Main Authors Menner, Marcel, Neuner, Lukas, Lunenburger, Lars, Zeilinger, Melanie N.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article presents a method for tailoring a parametric controller based on human ratings. The method leverages supervised learning concepts in order to train a reward model from data. It is applied to a gait rehabilitation robot with the goal of teaching the robot how to walk patients physiologically. In this context, the reward model judges the physiology of the gait cycle (instead of therapists) using sensor measurements provided by the robot and the automatic feedback controller chooses the input settings of the robot to maximize the reward. The key advantage of the proposed method is that only a few input adaptations are necessary to achieve a physiological gait cycle. Experiments with nondisabled subjects show that the proposed method permits the incorporation of human expertise into a control law and to automatically walk patients physiologically.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1552-3098
1941-0468
DOI:10.1109/TRO.2020.2964147