Synchronization of Low Voltage Grids Fed by Smart and Conventional Transformers

The Smart Transformer (ST) is a power electronics-based transformer, which operates as grid-forming converter in the low voltage-fed grid. It synthesizes the voltage waveform with magnitude, phase and frequency independently from the main power system. If a meshed operation of the ST with a conventi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on smart grid Vol. 12; no. 4; pp. 2941 - 2951
Main Authors Giacomuzzi, Stefano, De Carne, Giovanni, Pugliese, Sante, Buja, Giuseppe, Liserre, Marco, Kazerooni, Ali
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Smart Transformer (ST) is a power electronics-based transformer, which operates as grid-forming converter in the low voltage-fed grid. It synthesizes the voltage waveform with magnitude, phase and frequency independently from the main power system. If a meshed operation of the ST with a conventional transformer is required, to improve the power flow control and to control the voltage profile, the voltage waveforms between the two grids have to be synchronized. The switching under different voltage magnitude, phase or frequency, can lead to a large power in-rush. This work proposes a synchronization strategy that enables a seamless transition of the ST to parallel operations with conventional transformers. Differently from classical communication-based methods, this work addresses a more realistic implementation case with limited communication infrastructure. The ST relies only on local measurements and on its advanced control capability to determine the effective switch to parallel operations. The performance of the proposed strategy has been proved analytically and through simulations in a PLECS/MATLAB environment, and validated experimentally by means of Power-Hardware-In-Loop (PHIL) evaluation.
ISSN:1949-3053
1949-3061
DOI:10.1109/TSG.2021.3054478