Optically Powered Radio-Over-Fiber Systems in Support of 5G Cellular Networks and IoT
We propose using power-over-fiber (PoF) in some part of future 5G cellular solutions based on radio access networks considering currently installed front-haul solutions with single mode fiber to optically power communication systems for 5G new radio (NR) data transmission. Simulations addressing des...
Saved in:
Published in | Journal of lightwave technology Vol. 39; no. 13; pp. 4262 - 4269 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We propose using power-over-fiber (PoF) in some part of future 5G cellular solutions based on radio access networks considering currently installed front-haul solutions with single mode fiber to optically power communication systems for 5G new radio (NR) data transmission. Simulations addressing design parameters are presented. Radio-over-fiber (RoF) transmission over single mode fiber (SMF) is experimentally implemented and tested for link lengths ranging from 100 m up to 10 km with injected PoF signals up to 2 W. 64QAM, 16QAM and QPSK data traffic of 100 MHz bandwidth are transmitted simultaneously with the PoF signal showing an EVM compliant with 5G NR standard, and up to 0.5 W for 256QAM. EVM of 4.3% is achieved with RF signal of 20 GHz and QPSK modulation format in coexistence with delivering 870 mW of optical power to a photovoltaic cell (PV) after 10 km-long SMF link. Using PoF technology to optically powering remote units and Internet-of-Things (IoT) solutions based on RoF links is also discussed. |
---|---|
ISSN: | 0733-8724 1558-2213 |
DOI: | 10.1109/JLT.2021.3074193 |