MPI-Based System 2 for Determining LPBF Process Control Thresholds and Parameters
Determining thresholds of the primary control loops (System 1) of an additive manufacturing (AM) process is challenging when realizing System 1 with its fast and intuitive capability for adapting to different metal powers, machine configurations, and process parameters. Based on the convolution neur...
Saved in:
Published in | IEEE robotics and automation letters Vol. 6; no. 4; pp. 6553 - 6560 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Determining thresholds of the primary control loops (System 1) of an additive manufacturing (AM) process is challenging when realizing System 1 with its fast and intuitive capability for adapting to different metal powers, machine configurations, and process parameters. Based on the convolution neural network and long short-term memory models, this letter presents a secondary tuning loop (System 2) to classify the types of melt-pool images (MPIs) from a coaxial camera online, suggest polishing parameters, and determine the control thresholds of System 1 offline. Case studies indicate that the thresholds and parameters of System 1 including smoke discharging, powder coating, and laser polishing of control loops of a laser powder bed fusion (LPBF) machine can be more deliberatively and logically decided by the proposed MPI-based System 2. |
---|---|
ISSN: | 2377-3766 2377-3766 |
DOI: | 10.1109/LRA.2021.3092762 |