Monoclinic and Orthorhombic NaMnO2 for Secondary Batteries: A Comparative Study

In this manuscript, we report a detailed physico-chemical comparison between the α- and β-polymorphs of the NaMnO2 compound, a promising material for application in positive electrodes for secondary aprotic sodium batteries. In particular, the structure and vibrational properties, as well as electro...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 14; no. 5; p. 1230
Main Authors Manzi, Jessica, Paolone, Annalisa, Palumbo, Oriele, Corona, Domenico, Massaro, Arianna, Cavaliere, Rossana, Muñoz-García, Ana Belén, Trequattrini, Francesco, Pavone, Michele, Brutti, Sergio
Format Journal Article
LanguageEnglish
Published MDPI AG 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this manuscript, we report a detailed physico-chemical comparison between the α- and β-polymorphs of the NaMnO2 compound, a promising material for application in positive electrodes for secondary aprotic sodium batteries. In particular, the structure and vibrational properties, as well as electrochemical performance in sodium batteries, are compared to highlight differences and similarities. We exploit both laboratory techniques (Raman spectroscopy, electrochemical methods) and synchrotron radiation experiments (Fast-Fourier Transform Infrared spectroscopy, and X-ray diffraction). Notably the vibrational spectra of these phases are here reported for the first time in the literature as well as the detailed structural analysis from diffraction data. DFT+U calculations predict both phases to have similar electronic features, with structural parameters consistent with the experimental counterparts. The experimental evidence of antisite defects in the beta-phase between sodium and manganese ions is noticeable. Both polymorphs have been also tested in aprotic batteries by comparing the impact of different liquid electrolytes on the ability to de-intercalated/intercalate sodium ions. Overall, the monoclinic α-NaMnO2 shows larger reversible capacity exceeding 175 mAhg−1 at 10 mAg−1.
ISSN:1996-1073
1996-1073
DOI:10.3390/en14051230