Quality by design steered development of Niclosamide loaded liposomal thermogel for Melanoma: In vitro and Ex vivo evaluation

[Display omitted] Melanoma is the most malignant form of skin cancer across the globe. Conventional therapies are currently ineffective which could be attributed to the rampant chemo-resistance, metastasis, inability to cross the skin barriers and accumulate within the tumor microenvironment. This a...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of pharmaceutics and biopharmaceutics Vol. 180; pp. 119 - 136
Main Authors Shah, Saurabh, Famta, Paras, Fernandes, Valencia, Bagasariya, Deepkumar, Charankumar, Kondasingh, Kumar Khatri, Dharmendra, Bala Singh, Shashi, Srivastava, Saurabh
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] Melanoma is the most malignant form of skin cancer across the globe. Conventional therapies are currently ineffective which could be attributed to the rampant chemo-resistance, metastasis, inability to cross the skin barriers and accumulate within the tumor microenvironment. This advent brings in the principles of drug repurposing by repositioning Niclosamide (NIC), an anthelmintic drug for skin cancer. Incorporation into the liposomes facilitated enhanced melanoma cell uptake and apoptosis. Cytotoxicity studies revealed 1.756-fold enhancement in SK-MEL-28 cytotoxicity by NIC-loaded liposomes compared to free drug. Qualitative and quantitative cell internalization indicated greater drug uptake within the melanoma cells illustrating the efficacy of liposomes as efficient carrier systems. Nuclear staining showed blebbing and membrane shrinkage. Elevated ROS levels and apoptosis shown by DCFDA and acridine orange-ethidium bromide staining revealed greater melanoma cell death by liposomes compared to free drug. Incorporating NIC liposomes into the thermogel system restricted the liposomes as a depot onto the upper skin layers. Sustained zero order release up to 48 h with liposomes and 23.58-fold increase in viscosity led to the sol-to-gel transition at 33℃ was observed with liposomal thermogel. Ex vivo gel permeation studies revealed that C-6 loaded liposomes incorporated within the thermogel successfully formed a depot over the upper skin layer for 6 h to prevent transdermal delivery and systemic adverse effects. Thus, it could be concluded that NIC loaded liposomal thermogel system could be an efficacious therapeutic alternative for the management of melanoma.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0939-6411
1873-3441
DOI:10.1016/j.ejpb.2022.09.024