The diversity of phytic acid content and grain processing play decisive role on minerals bioavailability in rice
Rice is a staple food and important source of micronutrients for more than three billion people globally. However, the bioavailability of iron (Fe) and zinc (Zn) is affected by phytic acid (PA). In this work, we analyzed 67 genotypes for Fe, Zn and PA contents. Contrasting PA genotypes were selected...
Saved in:
Published in | Journal of food composition and analysis Vol. 115; p. 105032 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rice is a staple food and important source of micronutrients for more than three billion people globally. However, the bioavailability of iron (Fe) and zinc (Zn) is affected by phytic acid (PA). In this work, we analyzed 67 genotypes for Fe, Zn and PA contents. Contrasting PA genotypes were selected in each category of high protein, scented, pigmented and general rice for bioavailability analysis. Our results explain that though Fe content in genotype PB 140 was high, the bioavailability was low which might be due to its higher PA content (21.03 g/kg). The Fe and PA are majorly located in outer bran layer of endosperm, therefore, its bioavailability was affected by PA. However, Zn bioavailability was not much affected by PA as it is distributed homogenously in the rice grain. Moreover, PA biosynthetic genes (IPK1, MIPS1) and grain specific phosphorus transporter gene (SPDT) expressed higher in the middle stage of grain filling which was correlated with higher PA accumulation. Our study provides an insight into the improvement of mechanism of Fe and Zn bioavailability in rice grain which help breeders involved in biofortification programme to develop high minerals bioavailable genotypes by targeting PA related genes.
•Variability of phytic acid (PA) and mineral content in rice grain affects its bioavailability.•Grain processing also has impact on PA, mineral content and bioavailability.•Phytic acid show more pronounced effect on Fe bioavailability then Zn bioavailability.•Phosphorus transporter and PA biosynthesis genes expression linked to PA accumulation. |
---|---|
AbstractList | Rice is a staple food and important source of micronutrients for more than three billion people globally. However, the bioavailability of iron (Fe) and zinc (Zn) is affected by phytic acid (PA). In this work, we analyzed 67 genotypes for Fe, Zn and PA contents. Contrasting PA genotypes were selected in each category of high protein, scented, pigmented and general rice for bioavailability analysis. Our results explain that though Fe content in genotype PB 140 was high, the bioavailability was low which might be due to its higher PA content (21.03 g/kg). The Fe and PA are majorly located in outer bran layer of endosperm, therefore, its bioavailability was affected by PA. However, Zn bioavailability was not much affected by PA as it is distributed homogenously in the rice grain. Moreover, PA biosynthetic genes (IPK1, MIPS1) and grain specific phosphorus transporter gene (SPDT) expressed higher in the middle stage of grain filling which was correlated with higher PA accumulation. Our study provides an insight into the improvement of mechanism of Fe and Zn bioavailability in rice grain which help breeders involved in biofortification programme to develop high minerals bioavailable genotypes by targeting PA related genes. Rice is a staple food and important source of micronutrients for more than three billion people globally. However, the bioavailability of iron (Fe) and zinc (Zn) is affected by phytic acid (PA). In this work, we analyzed 67 genotypes for Fe, Zn and PA contents. Contrasting PA genotypes were selected in each category of high protein, scented, pigmented and general rice for bioavailability analysis. Our results explain that though Fe content in genotype PB 140 was high, the bioavailability was low which might be due to its higher PA content (21.03 g/kg). The Fe and PA are majorly located in outer bran layer of endosperm, therefore, its bioavailability was affected by PA. However, Zn bioavailability was not much affected by PA as it is distributed homogenously in the rice grain. Moreover, PA biosynthetic genes (IPK1, MIPS1) and grain specific phosphorus transporter gene (SPDT) expressed higher in the middle stage of grain filling which was correlated with higher PA accumulation. Our study provides an insight into the improvement of mechanism of Fe and Zn bioavailability in rice grain which help breeders involved in biofortification programme to develop high minerals bioavailable genotypes by targeting PA related genes. •Variability of phytic acid (PA) and mineral content in rice grain affects its bioavailability.•Grain processing also has impact on PA, mineral content and bioavailability.•Phytic acid show more pronounced effect on Fe bioavailability then Zn bioavailability.•Phosphorus transporter and PA biosynthesis genes expression linked to PA accumulation. |
ArticleNumber | 105032 |
Author | Lal, Milan Kumar Sahoo, Soumya Kumar Nayak, Lopamudra Sahoo, Upasana Behera, Biswaranjan Bagchi, Torit Baran Kumar, Awadhesh Dash, Goutam Kumar |
Author_xml | – sequence: 1 givenname: Awadhesh orcidid: 0000-0002-4428-1030 surname: Kumar fullname: Kumar, Awadhesh email: awadhesh.kumar@icar.gov.in, awadh_iari@yahoo.com organization: ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India – sequence: 2 givenname: Milan Kumar surname: Lal fullname: Lal, Milan Kumar organization: Division of Crop Physiology, Biochemistry and Postharvest Technology, ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India – sequence: 3 givenname: Soumya Kumar surname: Sahoo fullname: Sahoo, Soumya Kumar organization: Institute of Agricultural Sciences, Siksha O Anusandhan University, Campus 4, Bhubaneswar 751029, Odisha, India – sequence: 4 givenname: Goutam Kumar surname: Dash fullname: Dash, Goutam Kumar organization: M.S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi 761211, Odisha, India – sequence: 5 givenname: Upasana surname: Sahoo fullname: Sahoo, Upasana organization: ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India – sequence: 6 givenname: Biswaranjan surname: Behera fullname: Behera, Biswaranjan organization: ICAR-Indian Institute of Water Management, Bhubaneswar 751023, Odisha, India – sequence: 7 givenname: Lopamudra surname: Nayak fullname: Nayak, Lopamudra organization: ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India – sequence: 8 givenname: Torit Baran surname: Bagchi fullname: Bagchi, Torit Baran organization: ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India |
BookMark | eNp9kE1rGzEQhkVIIU7SP5CTjr2sq8-1FnopoU0LgV6SsxhLs8mYtbSRNgb_-8q4px5yGph5n2HmuWaXKSdk7E6KtRSy_7pb78YAayWUag0rtLpgKymGvhPGyUu2Es4NnbQbe8Wua90JIawybsXmp1fkkQ5YKi1Hnkc-vx4XChwCRR5yWjAtHFLkLwUo8bnkgLVSeuHzBEceMVBtOC95Qp4T31PCAlPlW8pwAJpgS9NpdYMLBbxln8Y2xs__6g17_vnj6f5X9_jn4ff998cuaK2Xzlo9DhsZYi8GMYBRdhzRWtAaexsHF4wbAaSOSoGxcsCtNUY56NHpoPutvmFfznvbxW_vWBe_pxpwmiBhfq9eS6udcWYjWlSdo6HkWguOfi60h3L0UviTXr_zJ73-pNef9TbI_QcFWmChZqyJmj5Gv51RbP8fCIuvgTAFjFQwLD5m-gj_C92ZmMc |
CitedBy_id | crossref_primary_10_1111_nbu_12732 crossref_primary_10_3390_agronomy13020527 crossref_primary_10_1007_s42729_024_01865_z crossref_primary_10_1016_j_jfca_2023_105529 crossref_primary_10_3390_foods12091883 |
Cites_doi | 10.1186/s12284-018-0200-y 10.1016/j.biotechadv.2012.02.001 10.1016/B978-0-12-800137-0.00002-9 10.1007/s40003-019-00429-3 10.1002/star.201900281 10.1016/j.jtemb.2005.02.008 10.1093/jaoac/58.3.436 10.1111/jfbc.13822 10.1104/pp.105.060269 10.1094/CCHEM-86-1-0100 10.1104/pp.112.206573 10.1016/j.bcab.2020.101600 10.1016/B978-0-12-805257-0.00005-3 10.3389/fpls.2013.00444 10.1016/j.gene.2007.04.018 10.1021/jf020222b 10.1111/j.1476-4431.2009.00418.x 10.1111/1541-4337.12216 10.1016/j.foodres.2021.110193 10.1016/j.tifs.2020.01.019 10.1016/S0378-4290(02)00031-X 10.1111/nure.12108 10.1016/j.foodchem.2021.129939 10.1186/1939-8433-6-12 10.1016/j.tifs.2021.02.067 10.1016/j.heliyon.2019.e01914 10.3390/molecules25235630 10.3390/su141811632 10.1016/S1672-6308(08)60010-4 10.1038/nature20610 10.1007/s13197-015-1918-9 10.1002/jsfa.2471 10.1159/000371618 10.1002/jsfa.10168 10.1007/978-981-15-5337-0_15 10.1016/B978-0-12-814174-8.00007-X 10.1093/ajcn/nqaa367 10.1038/srep19792 10.1016/j.jtemb.2017.02.005 10.1016/j.tifs.2017.02.017 10.1016/j.pbi.2017.05.002 10.1021/jf903275w 10.1016/j.tifs.2010.09.010 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. |
Copyright_xml | – notice: 2022 Elsevier Inc. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jfca.2022.105032 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Chemistry Diet & Clinical Nutrition |
EISSN | 1096-0481 |
ExternalDocumentID | 10_1016_j_jfca_2022_105032 S0889157522006500 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARLI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADFGL ADHUB ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG CBWCG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q G8K GBLVA HLV HVGLF HZ~ IHE J1W KOM LG5 LW8 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAB SCB SDF SDG SDP SES SEW SPC SPCBC SSA SSK SSZ T5K UHS UNMZH WUQ XPP ZMT ZU3 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c333t-553f971cd60909a425ffe55a33e65d98c48faa13d22a4519eb54428a6e83c36b3 |
IEDL.DBID | .~1 |
ISSN | 0889-1575 |
IngestDate | Thu Jul 10 22:13:26 EDT 2025 Tue Jul 01 02:51:12 EDT 2025 Thu Apr 24 23:08:47 EDT 2025 Fri Feb 23 02:38:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biofortification Iron Bioavailability Phytic acid Zinc |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-553f971cd60909a425ffe55a33e65d98c48faa13d22a4519eb54428a6e83c36b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4428-1030 |
PQID | 3153848470 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153848470 crossref_primary_10_1016_j_jfca_2022_105032 crossref_citationtrail_10_1016_j_jfca_2022_105032 elsevier_sciencedirect_doi_10_1016_j_jfca_2022_105032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationTitle | Journal of food composition and analysis |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Parikh, M., Sarawgi, A.K., Rao, D.S., Sharma, B., 2019. Assessment of genotypic variability for grain zinc and iron content in traditional and improved rice genotypes using energy dispersive X-ray fluorescence spectrophotometer (ED-XRF). International J Chem Stud, 7, pp. 1967–1974. Kumar, Sahu, Panda, Biswal, Sah, Lal, Baig, Swain, Behera, Chattopadhyay, Sharma (bib22) 2020; 100 Lee, Loh, Bong, Sarbini, Yiu (bib30) 2015; 52 Roohani, Hurrell, Kelishadi, Schulin (bib43) 2013; 18 Mitsuhashi, Ohnishi, Sekiguchi, Kwon, Chang, Chung, Inoue, Reid, Yagisawa, Mimura (bib38) 2005; 138 Perera, Seneweera, Hirotsu (bib40) 2018; 11 Mani, Iyer, Rai, Parulkar (bib35) 1994; 4 Gregorio, Senadhira, Mendoza, Manigbas, Roxas, Guerta (bib13) 2002; 76 Kumar, Palve, Joshi, Srivastava, Rukhsar (bib24) 2019 Srivastav, Vutukuru, Ravindran, Awad (bib33) 2022; 14 Bjørklund, Aaseth, Skalny, Suliburska, Skalnaya, Nikonorov, Tinkov (bib7) 2017 McCarthy, Murray, Hourihane, Kenny, Irvine, Kiely (bib36) 2021; 113 Cummings, Kovacic (bib9) 2009; 19 Bhullar, Gruissem (bib6) 2013; 31 Kumar, Nayak, Ngangkham, Sah, Lal, Azharudheen, Behera, Swain, Behera, Sharma (bib21) 2021; 45 Han, Lim (bib14) 2009; 86 Al-Tawaha, Singh, Singh, Kafeel, Naikoo, Kumari, Imran, Al-Tawaha, Qaisi, Khanum, Thangadurai, Sangeetha, Islam, Etesami, Kerkoub, Amrani, Labidi, Maaref, Nasri, Sanmukh, Torrents Serra (bib3) 2020 . Lal, Singh, Sharma, Singh, Kumar (bib28) 2021; 111 Suri, Tanumihardjo (bib46) 2016; 15 Trijatmiko, 10, Dueñas, Tsakirpaloglou, Torrizo, Arines, Adeva, Balindong, Oliva, Sapasap, Borrero, Rey, Francisco, Nelson, Nakanishi, Lombi, Tako, Glahn, Stangoulis, Mohanty, Johnson, Tohme, Barry, Slamet-Loedin (bib48) 2016; 6 Abbaspour, Hurrell, Kelishadi (bib1) 2014; 19 Van Buggenhout, Alminger, Lemmens, Colle, Knockaert, Moelants, Van Loey, Hendrickx (bib49) 2010 Josefsen, Bohn, Sørensen, Rasmussen (bib19) 2007; 397 La Frano, de Moura, Boy, Lönnerdal, Burri (bib25) 2014; 72 Bailey, West, Black (bib5) 2015; 66 Drago, S.R., 2017. Minerals. In: Nutraceutical and Functional Food Components: effects of Innovative Processing Techniques. Elsevier Inc., pp. 129–157. Lal, Kumar, Raigond, Dutt, Changan, Chourasia, Tiwari, Kumar, Sharma, Chakrabarti, Singh (bib27) 2021; 73 Yamaji, Takemoto, Miyaji, Mitani-Ueno, Yoshida, Ma (bib52) 2017; 541 Luo, Xie, Cui (bib32) 2010; 58 Kumar, Lal, Kar, Nayak, Ngangkham, Samantaray, Sharma (bib20) 2017 Thakur, Raigond, Singh, Mishra, Singh, Lal, Dutt (bib47) 2020; 97 Farias, Marcelino, Santana, de Almeida, Guimarães, de, Pott, Hiane, Freitas (bib11) 2020 Lucca, Hurrell, Potrykus (bib31) 2001 Maganti, Swaminathan, Parida (bib34) 2020; 9 Affonfere, Chadare, Fassinou, Linnemann, Duodu (bib2) 2021 Isaac, Johnson (bib17) 1975; 58 Prasad, Shivay, Kumar (bib41) 2014; 125 Ali, Paul, Gayen, Sarkar, Datta, Datta (bib4) 2013; 6 Cilla, A., Barberá, R., López-García, G., Blanco-Morales, V., Alegría, A., Garcia-Llatas, G., 2019. Impact of processing on mineral bioaccessibility/bioavailability. In: Innovative Thermal and Non-Thermal Processing, Bioaccessibility and Bioavailability of Nutrients and Bioactive Compounds. Elsevier, pp. 209–239. Kumar, Singh, Raigond, Sahu, Mishra, Sharma, Lal (bib23) 2021; 142 Lal, Kumar, Kardile, Raigond, Changan, Thakur, Dutt, Tiwari, Chourasia, Kumar, Singh (bib26) 2020 Gharibzahedi, Jafari (bib12) 2017 Iwai, Takahashi, Oda, Terada, Yoshida (bib18) 2012; 160 Yamaji, Ma (bib51) 2017 Hunt, Johnson, Juliano (bib16) 2002; 50 Lal, Tiwari, Kumar, Naga, Kumar, Singh, Raigond, Dutt, Chourasia, Kumar, Parmar, Changan (bib29) 2021; 359 Handa, Sharma, Kaur, Arya (bib15) 2020 Meng, Wei, Yang (bib37) 2005; 18 Rose, Liu, Wissuwa (bib44) 2013; 4 Wu, Cheng, Liu, Wei (bib50) 2007; 14 Prom-U-Thai, Huang, Glahn, Welch, Fukai, Rerkasem (bib42) 2006; 86 Saha, Reddy (bib45) 2016; 29 Mitsuhashi (10.1016/j.jfca.2022.105032_bib38) 2005; 138 Handa (10.1016/j.jfca.2022.105032_bib15) 2020 Trijatmiko (10.1016/j.jfca.2022.105032_bib48) 2016; 6 Gharibzahedi (10.1016/j.jfca.2022.105032_bib12) 2017 Lal (10.1016/j.jfca.2022.105032_bib29) 2021; 359 Iwai (10.1016/j.jfca.2022.105032_bib18) 2012; 160 Yamaji (10.1016/j.jfca.2022.105032_bib52) 2017; 541 Josefsen (10.1016/j.jfca.2022.105032_bib19) 2007; 397 Rose (10.1016/j.jfca.2022.105032_bib44) 2013; 4 Lee (10.1016/j.jfca.2022.105032_bib30) 2015; 52 Kumar (10.1016/j.jfca.2022.105032_bib20) 2017 Kumar (10.1016/j.jfca.2022.105032_bib21) 2021; 45 Isaac (10.1016/j.jfca.2022.105032_bib17) 1975; 58 Farias (10.1016/j.jfca.2022.105032_bib11) 2020 Bhullar (10.1016/j.jfca.2022.105032_bib6) 2013; 31 Gregorio (10.1016/j.jfca.2022.105032_bib13) 2002; 76 10.1016/j.jfca.2022.105032_bib8 Van Buggenhout (10.1016/j.jfca.2022.105032_bib49) 2010 Prom-U-Thai (10.1016/j.jfca.2022.105032_bib42) 2006; 86 Srivastav (10.1016/j.jfca.2022.105032_bib33) 2022; 14 Affonfere (10.1016/j.jfca.2022.105032_bib2) 2021 Lal (10.1016/j.jfca.2022.105032_bib28) 2021; 111 Abbaspour (10.1016/j.jfca.2022.105032_bib1) 2014; 19 Kumar (10.1016/j.jfca.2022.105032_bib23) 2021; 142 Bjørklund (10.1016/j.jfca.2022.105032_bib7) 2017 Lal (10.1016/j.jfca.2022.105032_bib27) 2021; 73 Al-Tawaha (10.1016/j.jfca.2022.105032_bib3) 2020 10.1016/j.jfca.2022.105032_bib10 Thakur (10.1016/j.jfca.2022.105032_bib47) 2020; 97 Cummings (10.1016/j.jfca.2022.105032_bib9) 2009; 19 Wu (10.1016/j.jfca.2022.105032_bib50) 2007; 14 Bailey (10.1016/j.jfca.2022.105032_bib5) 2015; 66 Ali (10.1016/j.jfca.2022.105032_bib4) 2013; 6 Luo (10.1016/j.jfca.2022.105032_bib32) 2010; 58 Hunt (10.1016/j.jfca.2022.105032_bib16) 2002; 50 Kumar (10.1016/j.jfca.2022.105032_bib22) 2020; 100 Perera (10.1016/j.jfca.2022.105032_bib40) 2018; 11 Mani (10.1016/j.jfca.2022.105032_bib35) 1994; 4 Roohani (10.1016/j.jfca.2022.105032_bib43) 2013; 18 Kumar (10.1016/j.jfca.2022.105032_bib24) 2019 Lal (10.1016/j.jfca.2022.105032_bib26) 2020 La Frano (10.1016/j.jfca.2022.105032_bib25) 2014; 72 Maganti (10.1016/j.jfca.2022.105032_bib34) 2020; 9 Suri (10.1016/j.jfca.2022.105032_bib46) 2016; 15 Han (10.1016/j.jfca.2022.105032_bib14) 2009; 86 McCarthy (10.1016/j.jfca.2022.105032_bib36) 2021; 113 Prasad (10.1016/j.jfca.2022.105032_bib41) 2014; 125 Lucca (10.1016/j.jfca.2022.105032_bib31) 2001 Meng (10.1016/j.jfca.2022.105032_bib37) 2005; 18 Saha (10.1016/j.jfca.2022.105032_bib45) 2016; 29 10.1016/j.jfca.2022.105032_bib39 Yamaji (10.1016/j.jfca.2022.105032_bib51) 2017 |
References_xml | – volume: 97 start-page: 366 year: 2020 end-page: 380 ident: bib47 article-title: Recent updates on bioaccessibility of phytonutrients publication-title: Trends Food Sci. Technol. – volume: 6 start-page: 1 year: 2013 end-page: 12 ident: bib4 article-title: RNAi mediated down regulation of myo-inositol-3-phosphate synthase to generate low phytate rice publication-title: Rice – year: 2020 ident: bib15 article-title: Biotechnological applications of microbial phytase and phytic acid in food and feed industries publication-title: Biocatal. Agric. Biotechnol. – volume: 138 start-page: 1607 year: 2005 end-page: 1614 ident: bib38 article-title: Phytic acid synthesis and vacuolar accumulation in suspension-cultured cells of Catharanthus roseus induced by high concentration of inorganic phosphate and cations publication-title: Plant Physiol. – volume: 73 start-page: 1900281 year: 2021 ident: bib27 article-title: Impact of starch storage condition on glycemic index and resistant starch of cooked potato (Solanum tuberosum) tubers publication-title: Starch/Staerke – volume: 9 start-page: 316 year: 2020 end-page: 328 ident: bib34 article-title: Variation in iron and zinc content in traditional rice genotypes publication-title: Agric. Res. – volume: 125 start-page: 55 year: 2014 end-page: 91 ident: bib41 article-title: Agronomic biofortification of cereal grains with iron and zinc publication-title: Adv. Agron. – reference: Parikh, M., Sarawgi, A.K., Rao, D.S., Sharma, B., 2019. Assessment of genotypic variability for grain zinc and iron content in traditional and improved rice genotypes using energy dispersive X-ray fluorescence spectrophotometer (ED-XRF). International J Chem Stud, 7, pp. 1967–1974. – volume: 76 start-page: 91 year: 2002 end-page: 101 ident: bib13 article-title: Progress in breeding for salinity tolerance and associated abiotic stresses in rice publication-title: Field Crops Res. – volume: 14 start-page: 311 year: 2007 end-page: 314 ident: bib50 article-title: Difference of phytic acid content and its relation to four protein composition contents in grains of twenty-nine japonica Rice Varieties from Jiangsu and Zhejiang Provinces publication-title: China Rice Sci. – reference: Drago, S.R., 2017. Minerals. In: Nutraceutical and Functional Food Components: effects of Innovative Processing Techniques. Elsevier Inc., pp. 129–157. 〈 – volume: 111 start-page: 741 year: 2021 end-page: 755 ident: bib28 article-title: Glycemic index of starchy crops and factors affecting its digestibility: a review publication-title: Trends Food Sci. Technol. – volume: 11 start-page: 1 year: 2018 end-page: 13 ident: bib40 article-title: Manipulating the phytic acid content of rice grain toward improving micronutrient bioavailability publication-title: Rice – volume: 160 start-page: 2007 year: 2012 end-page: 2014 ident: bib18 article-title: Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development publication-title: Plant Physiol. – reference: 〉. – start-page: 41 year: 2017 ident: bib20 article-title: Bioavailability of iron and zinc as affected by phytic acid content in rice grain publication-title: J. Food Biochem. – year: 2010 ident: bib49 article-title: In vitro approaches to estimate the effect of food processing on carotenoid bioavailability need thorough understanding of process induced microstructural changes publication-title: Trends Food Sci. Technol. – volume: 18 start-page: 144 year: 2013 end-page: 157 ident: bib43 article-title: Zinc and its importance for human health: an integrative review publication-title: J. Res. Med. Sci. – reference: Cilla, A., Barberá, R., López-García, G., Blanco-Morales, V., Alegría, A., Garcia-Llatas, G., 2019. Impact of processing on mineral bioaccessibility/bioavailability. In: Innovative Thermal and Non-Thermal Processing, Bioaccessibility and Bioavailability of Nutrients and Bioactive Compounds. Elsevier, pp. 209–239. 〈 – volume: 72 start-page: 289 year: 2014 end-page: 307 ident: bib25 article-title: Bioavailability of iron, zinc, and provitamin A carotenoids in biofortified staple crops publication-title: Nutr. Rev. – start-page: 1 year: 2021 end-page: 29 ident: bib2 article-title: In-vitro digestibility methods and factors affecting minerals bioavailability: a review publication-title: Food Rev. Int. – volume: 4 start-page: 321 year: 1994 end-page: 325 ident: bib35 article-title: Study on the glycemic index of selected cereals and cereal-green leafy vegetable combinations in non-insulin-dependent diabetes mellitus patients publication-title: J. Nutr. Med. – start-page: 105 year: 2020 end-page: 125 ident: bib26 article-title: Biofortification of Vegetables publication-title: Advances in Agri-Food Biotechnology – volume: 50 start-page: 5229 year: 2002 end-page: 5235 ident: bib16 article-title: Bioavailability of zinc from cooked Philippine milled, undermilled, and brown rice, as assessed in rats by using growth, bone zinc, and zinc-65 retention publication-title: J. Agric. Food Chem. – volume: 541 start-page: 92 year: 2017 end-page: 95 ident: bib52 article-title: Reducing phosphorus accumulation in rice grains with an impaired transporter in the node publication-title: Nature – year: 2017 ident: bib12 article-title: The importance of minerals in human nutrition: bioavailability, food fortification, processing effects and nanoencapsulation publication-title: Trends Food Sci. Technol. – year: 2017 ident: bib51 article-title: Node-controlled allocation of mineral elements in Poaceae publication-title: Curr. Opin. Plant Biol. – volume: 66 start-page: 22 year: 2015 end-page: 33 ident: bib5 article-title: The epidemiology of global micronutrient deficiencies publication-title: Ann. Nutr. Metab. – year: 2017 ident: bib7 article-title: Interactions of iron with manganese, zinc, chromium, and selenium as related to prophylaxis and treatment of iron deficiency publication-title: J. Trace Elem. Med. Biol. – volume: 29 start-page: 163 year: 2016 end-page: 173 ident: bib45 article-title: Phytic acid: Boon or bane?: Conflict between animal/human nutrition and plant health publication-title: J. Food Legumes – volume: 142 year: 2021 ident: bib23 article-title: Phytic acid: Blessing in disguise, a prime compound required for both plant and human nutrition publication-title: Food Res. Int. – start-page: 307 year: 2020 end-page: 337 ident: bib3 article-title: Improving water use efficiency and nitrogen use efficiency in rice through breeding and genomics approaches publication-title: Rice Res. Qual. Improv. Genom. Genet. Eng. – year: 2020 ident: bib11 article-title: Minerals in pregnancy and their impact on child growth and development publication-title: Molecules – volume: 86 start-page: 100 year: 2009 end-page: 105 ident: bib14 article-title: Effect of presoaking on textural, thermal, and digestive properties of cooked brown rice publication-title: Cereal Chem. – volume: 14 start-page: 11632 year: 2022 ident: bib33 article-title: Biofortification-present scenario, possibilities and challenges: a scientometric approach publication-title: Sustainability – volume: 15 start-page: 912 year: 2016 end-page: 926 ident: bib46 article-title: Effects of different processing methods on the micronutrient and phytochemical contents of maize: from A to Z publication-title: Compr. Rev. Food Sci. Food Saf. – volume: 6 start-page: 19792 year: 2016 ident: bib48 article-title: Biofortified indica rice attains iron and zinc nutrition dietary targets in the field publication-title: Sci. Rep. – volume: 100 start-page: 1598 year: 2020 end-page: 1607 ident: bib22 article-title: Phytic acid content may affect starch digestibility and glycemic index value of rice (Oryza sativa L.) publication-title: J. Sci. Food Agric. – volume: 58 start-page: 436 year: 1975 end-page: 440 ident: bib17 article-title: Collaborative study of wet and dry ashing techniques for the elemental analysis of plant tissue by atomic absorption spectrophotometry publication-title: J. AOAC Int. – volume: 86 start-page: 1209 year: 2006 end-page: 1215 ident: bib42 article-title: Iron (Fe) bioavailability and the distribution of anti-Fe nutrition biochemicals in the unpolished, polished grain and bran fraction of five rice genotypes publication-title: J. Sci. Food Agric. – volume: 19 start-page: 215 year: 2009 end-page: 240 ident: bib9 article-title: The ubiquitous role of zinc in health and disease: State-of-the-Art review publication-title: J. Vet. Emerg. Crit. Care – volume: 45 year: 2021 ident: bib21 article-title: A single nucleotide substitution in the SPDT transporter gene reduced phytic acid and increased mineral bioavailability from Rice grain (Oryza sativa L.) publication-title: J. Food Biochem. – year: 2019 ident: bib24 article-title: Crop biofortification for iron (Fe), zinc (Zn) and vitamin A with transgenic approaches publication-title: Heliyon – volume: 4 start-page: 444 year: 2013 ident: bib44 article-title: Improving phosphorus efficiency in cereal crops: is breeding for reduced grain phosphorus concentration part of the solution publication-title: Front Plant Sci. – volume: 58 start-page: 2483 year: 2010 end-page: 2490 ident: bib32 article-title: Effects of phytase, cellulase, and dehulling treatments on iron and zinc in vitro solubility in faba bean (Vicia faba l.) flour and legume fractions publication-title: J. Agric. Food Chem. – volume: 52 start-page: 7806 year: 2015 end-page: 7816 ident: bib30 article-title: Impact of phytic acid on nutrient bioaccessibility and antioxidant properties of dehusked rice publication-title: J. Food Sci. Technol. – volume: 113 start-page: 1032 year: 2021 end-page: 1041 ident: bib36 article-title: Behavioral consequences at 5 y of neonatal iron deficiency in a low-risk maternal-infant cohort publication-title: Am. J. Clin. Nutr. – volume: 397 start-page: 114 year: 2007 end-page: 125 ident: bib19 article-title: Characterization of a multifunctional inositol phosphate kinase from rice and barley belonging to the ATP-grasp superfamily publication-title: Gene – volume: 31 start-page: 50 year: 2013 end-page: 57 ident: bib6 article-title: Nutritional enhancement of rice for human health: the contribution of biotechnology publication-title: Biotechnol. Adv. – volume: 18 start-page: 333 year: 2005 end-page: 338 ident: bib37 article-title: Iron content and bioavailability in rice publication-title: J. Trace Elem. Med. Biol. – volume: 359 year: 2021 ident: bib29 article-title: Effect of potato apical leaf curl disease on glycemic index and resistant starch of potato (Solanum tuberosum L.) tubers publication-title: Food Chem. – start-page: 828 year: 2001 end-page: 834 ident: bib31 article-title: Approaches to improving the bioavailability and level of iron in rice seeds publication-title: J. Sci. Food Agric. John Wiley Sons, Ltd – volume: 19 start-page: 164 year: 2014 end-page: 174 ident: bib1 article-title: Review on iron and its importance for human health publication-title: J. Res. Med. Sci. – start-page: 828 year: 2001 ident: 10.1016/j.jfca.2022.105032_bib31 article-title: Approaches to improving the bioavailability and level of iron in rice seeds publication-title: J. Sci. Food Agric. John Wiley Sons, Ltd – volume: 11 start-page: 1 year: 2018 ident: 10.1016/j.jfca.2022.105032_bib40 article-title: Manipulating the phytic acid content of rice grain toward improving micronutrient bioavailability publication-title: Rice doi: 10.1186/s12284-018-0200-y – volume: 31 start-page: 50 year: 2013 ident: 10.1016/j.jfca.2022.105032_bib6 article-title: Nutritional enhancement of rice for human health: the contribution of biotechnology publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2012.02.001 – volume: 125 start-page: 55 year: 2014 ident: 10.1016/j.jfca.2022.105032_bib41 article-title: Agronomic biofortification of cereal grains with iron and zinc publication-title: Adv. Agron. doi: 10.1016/B978-0-12-800137-0.00002-9 – volume: 9 start-page: 316 year: 2020 ident: 10.1016/j.jfca.2022.105032_bib34 article-title: Variation in iron and zinc content in traditional rice genotypes publication-title: Agric. Res. doi: 10.1007/s40003-019-00429-3 – volume: 73 start-page: 1900281 year: 2021 ident: 10.1016/j.jfca.2022.105032_bib27 article-title: Impact of starch storage condition on glycemic index and resistant starch of cooked potato (Solanum tuberosum) tubers publication-title: Starch/Staerke doi: 10.1002/star.201900281 – volume: 18 start-page: 333 year: 2005 ident: 10.1016/j.jfca.2022.105032_bib37 article-title: Iron content and bioavailability in rice publication-title: J. Trace Elem. Med. Biol. doi: 10.1016/j.jtemb.2005.02.008 – start-page: 41 year: 2017 ident: 10.1016/j.jfca.2022.105032_bib20 article-title: Bioavailability of iron and zinc as affected by phytic acid content in rice grain publication-title: J. Food Biochem. – volume: 18 start-page: 144 year: 2013 ident: 10.1016/j.jfca.2022.105032_bib43 article-title: Zinc and its importance for human health: an integrative review publication-title: J. Res. Med. Sci. – volume: 58 start-page: 436 year: 1975 ident: 10.1016/j.jfca.2022.105032_bib17 article-title: Collaborative study of wet and dry ashing techniques for the elemental analysis of plant tissue by atomic absorption spectrophotometry publication-title: J. AOAC Int. doi: 10.1093/jaoac/58.3.436 – volume: 45 year: 2021 ident: 10.1016/j.jfca.2022.105032_bib21 article-title: A single nucleotide substitution in the SPDT transporter gene reduced phytic acid and increased mineral bioavailability from Rice grain (Oryza sativa L.) publication-title: J. Food Biochem. doi: 10.1111/jfbc.13822 – volume: 138 start-page: 1607 year: 2005 ident: 10.1016/j.jfca.2022.105032_bib38 article-title: Phytic acid synthesis and vacuolar accumulation in suspension-cultured cells of Catharanthus roseus induced by high concentration of inorganic phosphate and cations publication-title: Plant Physiol. doi: 10.1104/pp.105.060269 – volume: 4 start-page: 321 year: 1994 ident: 10.1016/j.jfca.2022.105032_bib35 article-title: Study on the glycemic index of selected cereals and cereal-green leafy vegetable combinations in non-insulin-dependent diabetes mellitus patients publication-title: J. Nutr. Med. – volume: 86 start-page: 100 year: 2009 ident: 10.1016/j.jfca.2022.105032_bib14 article-title: Effect of presoaking on textural, thermal, and digestive properties of cooked brown rice publication-title: Cereal Chem. doi: 10.1094/CCHEM-86-1-0100 – volume: 160 start-page: 2007 year: 2012 ident: 10.1016/j.jfca.2022.105032_bib18 article-title: Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development publication-title: Plant Physiol. doi: 10.1104/pp.112.206573 – start-page: 105 year: 2020 ident: 10.1016/j.jfca.2022.105032_bib26 article-title: Biofortification of Vegetables – ident: 10.1016/j.jfca.2022.105032_bib39 – year: 2020 ident: 10.1016/j.jfca.2022.105032_bib15 article-title: Biotechnological applications of microbial phytase and phytic acid in food and feed industries publication-title: Biocatal. Agric. Biotechnol. doi: 10.1016/j.bcab.2020.101600 – ident: 10.1016/j.jfca.2022.105032_bib10 doi: 10.1016/B978-0-12-805257-0.00005-3 – volume: 4 start-page: 444 year: 2013 ident: 10.1016/j.jfca.2022.105032_bib44 article-title: Improving phosphorus efficiency in cereal crops: is breeding for reduced grain phosphorus concentration part of the solution publication-title: Front Plant Sci. doi: 10.3389/fpls.2013.00444 – volume: 397 start-page: 114 year: 2007 ident: 10.1016/j.jfca.2022.105032_bib19 article-title: Characterization of a multifunctional inositol phosphate kinase from rice and barley belonging to the ATP-grasp superfamily publication-title: Gene doi: 10.1016/j.gene.2007.04.018 – volume: 50 start-page: 5229 year: 2002 ident: 10.1016/j.jfca.2022.105032_bib16 article-title: Bioavailability of zinc from cooked Philippine milled, undermilled, and brown rice, as assessed in rats by using growth, bone zinc, and zinc-65 retention publication-title: J. Agric. Food Chem. doi: 10.1021/jf020222b – volume: 19 start-page: 215 year: 2009 ident: 10.1016/j.jfca.2022.105032_bib9 article-title: The ubiquitous role of zinc in health and disease: State-of-the-Art review publication-title: J. Vet. Emerg. Crit. Care doi: 10.1111/j.1476-4431.2009.00418.x – volume: 15 start-page: 912 year: 2016 ident: 10.1016/j.jfca.2022.105032_bib46 article-title: Effects of different processing methods on the micronutrient and phytochemical contents of maize: from A to Z publication-title: Compr. Rev. Food Sci. Food Saf. doi: 10.1111/1541-4337.12216 – volume: 142 year: 2021 ident: 10.1016/j.jfca.2022.105032_bib23 article-title: Phytic acid: Blessing in disguise, a prime compound required for both plant and human nutrition publication-title: Food Res. Int. doi: 10.1016/j.foodres.2021.110193 – volume: 97 start-page: 366 year: 2020 ident: 10.1016/j.jfca.2022.105032_bib47 article-title: Recent updates on bioaccessibility of phytonutrients publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2020.01.019 – volume: 76 start-page: 91 year: 2002 ident: 10.1016/j.jfca.2022.105032_bib13 article-title: Progress in breeding for salinity tolerance and associated abiotic stresses in rice publication-title: Field Crops Res. doi: 10.1016/S0378-4290(02)00031-X – volume: 72 start-page: 289 year: 2014 ident: 10.1016/j.jfca.2022.105032_bib25 article-title: Bioavailability of iron, zinc, and provitamin A carotenoids in biofortified staple crops publication-title: Nutr. Rev. doi: 10.1111/nure.12108 – volume: 359 year: 2021 ident: 10.1016/j.jfca.2022.105032_bib29 article-title: Effect of potato apical leaf curl disease on glycemic index and resistant starch of potato (Solanum tuberosum L.) tubers publication-title: Food Chem. doi: 10.1016/j.foodchem.2021.129939 – volume: 6 start-page: 1 year: 2013 ident: 10.1016/j.jfca.2022.105032_bib4 article-title: RNAi mediated down regulation of myo-inositol-3-phosphate synthase to generate low phytate rice publication-title: Rice doi: 10.1186/1939-8433-6-12 – volume: 111 start-page: 741 year: 2021 ident: 10.1016/j.jfca.2022.105032_bib28 article-title: Glycemic index of starchy crops and factors affecting its digestibility: a review publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2021.02.067 – start-page: 1 year: 2021 ident: 10.1016/j.jfca.2022.105032_bib2 article-title: In-vitro digestibility methods and factors affecting minerals bioavailability: a review publication-title: Food Rev. Int. – year: 2019 ident: 10.1016/j.jfca.2022.105032_bib24 article-title: Crop biofortification for iron (Fe), zinc (Zn) and vitamin A with transgenic approaches publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e01914 – year: 2020 ident: 10.1016/j.jfca.2022.105032_bib11 article-title: Minerals in pregnancy and their impact on child growth and development publication-title: Molecules doi: 10.3390/molecules25235630 – volume: 14 start-page: 11632 year: 2022 ident: 10.1016/j.jfca.2022.105032_bib33 article-title: Biofortification-present scenario, possibilities and challenges: a scientometric approach publication-title: Sustainability doi: 10.3390/su141811632 – volume: 14 start-page: 311 year: 2007 ident: 10.1016/j.jfca.2022.105032_bib50 article-title: Difference of phytic acid content and its relation to four protein composition contents in grains of twenty-nine japonica Rice Varieties from Jiangsu and Zhejiang Provinces publication-title: China Rice Sci. doi: 10.1016/S1672-6308(08)60010-4 – volume: 541 start-page: 92 year: 2017 ident: 10.1016/j.jfca.2022.105032_bib52 article-title: Reducing phosphorus accumulation in rice grains with an impaired transporter in the node publication-title: Nature doi: 10.1038/nature20610 – volume: 19 start-page: 164 year: 2014 ident: 10.1016/j.jfca.2022.105032_bib1 article-title: Review on iron and its importance for human health publication-title: J. Res. Med. Sci. – volume: 52 start-page: 7806 year: 2015 ident: 10.1016/j.jfca.2022.105032_bib30 article-title: Impact of phytic acid on nutrient bioaccessibility and antioxidant properties of dehusked rice publication-title: J. Food Sci. Technol. doi: 10.1007/s13197-015-1918-9 – volume: 86 start-page: 1209 year: 2006 ident: 10.1016/j.jfca.2022.105032_bib42 article-title: Iron (Fe) bioavailability and the distribution of anti-Fe nutrition biochemicals in the unpolished, polished grain and bran fraction of five rice genotypes publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.2471 – volume: 66 start-page: 22 year: 2015 ident: 10.1016/j.jfca.2022.105032_bib5 article-title: The epidemiology of global micronutrient deficiencies publication-title: Ann. Nutr. Metab. doi: 10.1159/000371618 – volume: 100 start-page: 1598 year: 2020 ident: 10.1016/j.jfca.2022.105032_bib22 article-title: Phytic acid content may affect starch digestibility and glycemic index value of rice (Oryza sativa L.) publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.10168 – start-page: 307 year: 2020 ident: 10.1016/j.jfca.2022.105032_bib3 article-title: Improving water use efficiency and nitrogen use efficiency in rice through breeding and genomics approaches publication-title: Rice Res. Qual. Improv. Genom. Genet. Eng. doi: 10.1007/978-981-15-5337-0_15 – ident: 10.1016/j.jfca.2022.105032_bib8 doi: 10.1016/B978-0-12-814174-8.00007-X – volume: 113 start-page: 1032 year: 2021 ident: 10.1016/j.jfca.2022.105032_bib36 article-title: Behavioral consequences at 5 y of neonatal iron deficiency in a low-risk maternal-infant cohort publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/nqaa367 – volume: 29 start-page: 163 year: 2016 ident: 10.1016/j.jfca.2022.105032_bib45 article-title: Phytic acid: Boon or bane?: Conflict between animal/human nutrition and plant health publication-title: J. Food Legumes – volume: 6 start-page: 19792 year: 2016 ident: 10.1016/j.jfca.2022.105032_bib48 article-title: Biofortified indica rice attains iron and zinc nutrition dietary targets in the field publication-title: Sci. Rep. doi: 10.1038/srep19792 – year: 2017 ident: 10.1016/j.jfca.2022.105032_bib7 article-title: Interactions of iron with manganese, zinc, chromium, and selenium as related to prophylaxis and treatment of iron deficiency publication-title: J. Trace Elem. Med. Biol. doi: 10.1016/j.jtemb.2017.02.005 – year: 2017 ident: 10.1016/j.jfca.2022.105032_bib12 article-title: The importance of minerals in human nutrition: bioavailability, food fortification, processing effects and nanoencapsulation publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2017.02.017 – year: 2017 ident: 10.1016/j.jfca.2022.105032_bib51 article-title: Node-controlled allocation of mineral elements in Poaceae publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2017.05.002 – volume: 58 start-page: 2483 year: 2010 ident: 10.1016/j.jfca.2022.105032_bib32 article-title: Effects of phytase, cellulase, and dehulling treatments on iron and zinc in vitro solubility in faba bean (Vicia faba l.) flour and legume fractions publication-title: J. Agric. Food Chem. doi: 10.1021/jf903275w – year: 2010 ident: 10.1016/j.jfca.2022.105032_bib49 article-title: In vitro approaches to estimate the effect of food processing on carotenoid bioavailability need thorough understanding of process induced microstructural changes publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2010.09.010 |
SSID | ssj0005248 |
Score | 2.4512644 |
Snippet | Rice is a staple food and important source of micronutrients for more than three billion people globally. However, the bioavailability of iron (Fe) and zinc... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105032 |
SubjectTerms | Bioavailability Biofortification biosynthesis bran endosperm food composition genes genotype Iron phosphorus Phytic acid rice staple foods Zinc |
Title | The diversity of phytic acid content and grain processing play decisive role on minerals bioavailability in rice |
URI | https://dx.doi.org/10.1016/j.jfca.2022.105032 https://www.proquest.com/docview/3153848470 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEF5K-6AvolXxeCkjiC8ST5K9JHkspy3H20HUQt_CXkvKMQme00Jf_O3OJNmign3wKRB2l7AzmZlNvvk-xl7lhdFYDanEpUEnIrg0KQ2eWiVXVpWiKr2lRuFPK7U8Fe_P5NkOW8ReGIJVTrF_jOlDtJ7uzKfdnPdNM_9KAJ0Mq408H-oMOrcLUZCXv_35O8xjUNAa0Dw0emqcGTFeF8ES91Cek9xtyvN_Jae_wvSQe07us3tT0QiH43M9YDu-3Wd3FlGrbZ_Njhq_hdcwsXyuYRVJ9nFc7D3ePGQ9egW4CMWALgDuMi4K2jYOCLaOOQh06-CcpCOgH9sIML1Bv9bX4AZFnisPBEqEroXvzcBavQHTdPpKN-uR9vsacDLRFT1ipyfH3xbLZNJcSCznfJtIyUNVZNaptEorjW90CF5KzblX0lWlFWXQOuMuzzUx03gjBZ5gtPIlt1wZ_pjttl3rnzAwWIsWuEJllBJeep057gvlgnGpd5mdsSxudm0nQnLSxVjXEXl2UZOBajJQPRpoxt7czOlHOo5bR8tow_oPp6oxX9w672U0eI2GpF8ouvXd5abmlCAEZvT06X-u_YzdJcX68SvOc7a7_XHpX2BdszUHg-MesL3DxZePn-n67sNy9QsGkfj8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWq7aFcEBQQS4EOEuKCok3i2Jscq4VqS9u90Eq9WY4_UKolibrbSv33zCQ2AiR66DXyWJHHnhknb95j7GM-rzVWQzKxqddJ4W2alDXeWgWXRpZFVTpDjcLnK7m8LL5diasdtoi9MASrDLF_jOlDtA5PZmE1Z33TzL4TQCfDaiPPhzoD7-27xE4lJmz36OR0ufoD6TGIaA2AHjIIvTMjzOvaG6IfynNSvE15_r_89E-kHtLP8TP2NNSNcDS-2nO249p9treIcm37bPqlcVv4BIHocw2ryLOP42L78eYF63FjgI1oDOg84ELjpKBNY4GQ65iGQLcWfpB6BPRjJwFmOOjX-h7sIMpz54BwidC18LMZiKs3UDedvtPNemT-vgc0Jsail-zy-OvFYpkE2YXEcM63iRDcV_PMWJlWaaXxUHvvhNCcOylsVZqi9Fpn3Oa5JnIaV4sCLzFaupIbLmv-ik3arnWvGdRYjs5xhqqWsnDC6cxyN5fW1zZ1NjNTlsXFViZwkpM0xlpF8Nm1IgcpcpAaHTRln3_b9CMjx4OjRfSh-mtfKUwZD9p9iA5X6Ej6i6Jb191uFKccUWBST988cu5Dtre8OD9TZyer0wP2hATsx486b9lke3Pr3mGZs63fh238C7-W-hg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+diversity+of+phytic+acid+content+and+grain+processing+play+decisive+role+on+minerals+bioavailability+in+rice&rft.jtitle=Journal+of+food+composition+and+analysis&rft.au=Kumar%2C+Awadhesh&rft.au=Lal%2C+Milan+Kumar&rft.au=Sahoo%2C+Soumya+Kumar&rft.au=Dash%2C+Goutam+Kumar&rft.date=2023-01-01&rft.pub=Elsevier+Inc&rft.issn=0889-1575&rft.eissn=1096-0481&rft.volume=115&rft_id=info:doi/10.1016%2Fj.jfca.2022.105032&rft.externalDocID=S0889157522006500 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0889-1575&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0889-1575&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0889-1575&client=summon |