Parameter Estimation Based on Scale-Dependent Algebraic Expressions and Scale-Space Fitting

We present our results of applying wavelet theory to the classic problem of estimating the unknown parameters of a model function subject to noise. The model function studied in this context is a generalization of the second-order Gaussian derivative of which the Gaussian function is a special case....

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 67; no. 6; pp. 1431 - 1446
Main Authors Kukuk, Markus, Spicher, Nicolai
Format Journal Article
LanguageEnglish
Published New York IEEE 15.03.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present our results of applying wavelet theory to the classic problem of estimating the unknown parameters of a model function subject to noise. The model function studied in this context is a generalization of the second-order Gaussian derivative of which the Gaussian function is a special case. For all five model parameters (amplitude, width, location, baseline, undershoot-size), scale-dependent algebraic expressions are derived. Based on this analytical framework, our first method estimates all parameters by substituting into a given expression numerically obtained values, such as the zero-crossings of the multiscale decompositions of the noisy input signal, using Gaussian derivative wavelets. Our second method takes these estimates as starting values for iterative least-squares optimization to fit our algebraic zero-crossing model to observed numeric zero-crossings in scale-space. For evaluation, we apply our method together with three reference methods to the three-parameter Gaussian model function. The results show that our method is on average 3.7 times more accurate than the respective best reference method for signal-to-noise ratios (SNR) from -{\text{10}} to 70 dB, using a synthetic test scenario proposed by a competitor. For our full five-parameter model, we investigate overall estimation error as well as per-parameter error and per-parameter uncertainty as a function of SNR and various noise models, including correlated noise. To demonstrate practical effectiveness and relevance, we apply our method to the well-studied problem of QRS complex delineation in electrocardiography signals. Out-of-the-box results show a performance comparable to the best algorithms known to date, without relying on problem-specific heuristic decision rules.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2018.2887190