Chronic Arsenic-Exposed Human Prostate Epithelial Cells Exhibit Stable Arsenic Tolerance: Mechanistic Implications of Altered Cellular Glutathione and Glutathione S-transferase

Acquisition of stable arsenic tolerance in human cells following chronic arsenic exposure has not been previously reported. In the present work, we describe acquisition of stable arsenic tolerance in the human prostate epithelial cell line RWPE-1 following chronic arsenic exposure in vitro. RWPE-1 c...

Full description

Saved in:
Bibliographic Details
Published inToxicology and applied pharmacology Vol. 183; no. 2; pp. 99 - 107
Main Authors Brambila, Eduardo M., Achanzar, William E., Qu, Wei, Webber, Mukta M., Waalkes, Michael P.
Format Journal Article
LanguageEnglish
Published San Diego, CA Elsevier Inc 01.09.2002
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Acquisition of stable arsenic tolerance in human cells following chronic arsenic exposure has not been previously reported. In the present work, we describe acquisition of stable arsenic tolerance in the human prostate epithelial cell line RWPE-1 following chronic arsenic exposure in vitro. RWPE-1 cells continuously exposed to 5 μM sodium arsenite for ≥18 weeks exhibited dramatic resistance to acute arsenite toxicity. The LC50 for acute arsenite exposure in these chronic arsenic-exposed prostate epithelial (CAsE-PE) cells was 43.8 μM versus 17.6 μM in control cells. Similar results were obtained using the antineoplastic agent arsenic trioxide. This tolerance was stable, as CAsE-PE cells grown in arsenic-free medium for 5 weeks retained their resistant phenotype. Compared to control cells, CAsE-PE cells showed a 90% reduction in arsenic accumulation over 24 h coupled with a 2.6-fold increase in the rate of arsenic efflux. CAsE-PE cells had increased basal GSH levels (4.9-fold) and increased GST activity (2.4-fold) and both GSH depletion and inhibition of GST activity abolished arsenic tolerance. Arsenic tolerance was also abolished by treatment with inhibitors of the Mdr1 and Mrp1 transporters, although no increases in mdr1 or mrp1 gene expression were observed. Our results indicate that this tolerance in human cells involves increases in GSH levels and GST activity that allow for more efficient arsenic efflux by MRP1 and MDR1. This study represents the first report of stable acquired arsenic tolerance in human cells, which could have important implications for both the toxicology and the pharmacology of arsenic.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0041-008X
1096-0333
DOI:10.1006/taap.2002.9468