Combinatorial Test Generation for Multiple Input Models With Shared Parameters

Combinatorial testing typically considers a single input model and creates a single test set that achieves <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="li-ieq1-30...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on software engineering Vol. 48; no. 7; pp. 2606 - 2628
Main Authors Rao, Chang, Li, Nan, Lei, Yu, Guo, Jin, Zhang, Yadong, Kacker, Raghu N., Kuhn, D. Richard
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2022
IEEE Computer Society
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Combinatorial testing typically considers a single input model and creates a single test set that achieves <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="li-ieq1-3065950.gif"/> </inline-formula>-way coverage. This paper addresses the problem of combinatorial test generation for multiple input models with shared parameters. We formally define the problem and propose an efficient approach to generating multiple test sets, one for each input model, that together satisfy <inline-formula><tex-math notation="LaTeX">t</tex-math> <mml:math><mml:mi>t</mml:mi></mml:math><inline-graphic xlink:href="li-ieq2-3065950.gif"/> </inline-formula>-way coverage for all of these input models while minimizing the amount of redundancy between these test sets. We report an experimental evaluation that applies our approach to five real-world applications. The results show that our approach can significantly reduce the amount of redundancy between the test sets generated for multiple input models and perform better than a post-optimization approach.
ISSN:0098-5589
1939-3520
DOI:10.1109/TSE.2021.3065950