ECL resonance energy transfer-regulated “off-on” mode biosensor for the detection of miRNA-150-5p in triple negative breast cancer
MiRNAs played critical roles in triple negative breast cancer (TNBC) as potential biomarkers. Herein, an efficient signal “off-on” mode-biosensor based on electrochemiluminescence resonance energy transfer (ECL-RET) was successfully constructed for the miRNA-150-5p determination in TNBC. The ECL-RET...
Saved in:
Published in | Biosensors & bioelectronics Vol. 240; p. 115663 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | MiRNAs played critical roles in triple negative breast cancer (TNBC) as potential biomarkers. Herein, an efficient signal “off-on” mode-biosensor based on electrochemiluminescence resonance energy transfer (ECL-RET) was successfully constructed for the miRNA-150-5p determination in TNBC. The ECL-RET regulated-sensing platform consisted of NiMn-LDHs nanoflowers, the artificially assembled phospholipid bilayers and hairpin DNA-labeled Eu-doped MoS2 QDs. Firstly, Eu-doped MoS2 QDs with high quantum efficiency were prepared as the ECL-RET donors. And NiMn-layer double hydroxides (LDHs) nanoflowers with wide UV–vis absorption spectra as the ECL-RET acceptors. Secondly, due to the hairpin DNA structure, the closed distance between ECL-RET donor-acceptor pair can quench the luminescence signal of Eu-doped MoS2 QDs. When miRNA-150-5p was captured, the hairpin DNA structure changed to a rodlike configuration and enlarged the distance between Eu-doped MoS2 QDs and NiMn-LDHs. As a result, the recovery of ECL signal can be observed as a signal “turn off-on” mode. Furthermore, the hydrophilicity of the lipid bilayer can reduce the nonspecific adsorption and improve the flexibility of the hairpin DNA efficiently. Therefore, based on the ECL-RET regulation strategy, the biosensor was employed to detect miRNA-150-5p from 10 fM to 1 nM with a detection limit of 1.5 fM. The constructed biosensor can effectively differentiate TNBC patient tumor and healthy breast fibroadenoma. The ECL-RET regulation strategy provided a new biosensing pathway for ultrasensitive detection of biomolecules and promoted the development of diagnosis and treatment of TNBC. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0956-5663 1873-4235 1873-4235 |
DOI: | 10.1016/j.bios.2023.115663 |