CNN Based Road User Detection Using the 3D Radar Cube
This letter presents a novel radar based, single-frame, multi-class detection method for moving road users (pedestrian, cyclist, car), which utilizes low-level radar cube data. The method provides class information both on the radar target- and object-level. Radar targets are classified individually...
Saved in:
Published in | IEEE robotics and automation letters Vol. 5; no. 2; pp. 1262 - 1269 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2377-3766 2377-3766 |
DOI | 10.1109/LRA.2020.2967272 |
Cover
Loading…
Summary: | This letter presents a novel radar based, single-frame, multi-class detection method for moving road users (pedestrian, cyclist, car), which utilizes low-level radar cube data. The method provides class information both on the radar target- and object-level. Radar targets are classified individually after extending the target features with a cropped block of the 3D radar cube around their positions, thereby capturing the motion of moving parts in the local velocity distribution. A Convolutional Neural Network (CNN) is proposed for this classification step. Afterwards, object proposals are generated with a clustering step, which not only considers the radar targets' positions and velocities, but their calculated class scores as well. In experiments on a real-life dataset we demonstrate that our method outperforms the state-of-the-art methods both target- and object-wise by reaching an average of 0.70 (baseline: 0.68) target-wise and 0.56 (baseline: 0.48) object-wise F1 score. Furthermore, we examine the importance of the used features in an ablation study. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2377-3766 2377-3766 |
DOI: | 10.1109/LRA.2020.2967272 |