A Novel Framework for Backstepping-Based Control of Discrete-Time Strict-Feedback Nonlinear Systems With Multiplicative Noises

This article is concerned with the exponential mean-square stabilization problem for a class of discrete-time strict-feedback nonlinear systems subject to multiplicative noises. The state-dependent multiplicative noise is assumed to occur randomly based on a stochastic variable obeying the Gaussian...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 66; no. 4; pp. 1484 - 1496
Main Authors Wang, Min, Wang, Zidong, Dong, Hongli, Han, Qing-Long
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article is concerned with the exponential mean-square stabilization problem for a class of discrete-time strict-feedback nonlinear systems subject to multiplicative noises. The state-dependent multiplicative noise is assumed to occur randomly based on a stochastic variable obeying the Gaussian white distribution. To tackle the difficulties caused by the multiplicative noise, a novel backstepping-based control framework is developed to design both the virtual control laws and the actual control law for the original nonlinear system, and such a framework is fundamentally different from the traditional <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula>-step predictor strategy. The proposed design scheme provides an effective way in establishing the relationship between the system states and the controlled errors, by which a noise-intensity-dependant stability condition is derived to ensure that the closed-loop system is exponentially mean-square stable for exactly known systems. To further cope with nonlinear modeling uncertainties, the radial basis function neural network (NN) is employed as a function approximator. In virtue of the proposed backstepping-based control framework, the ideal controller is characterized as a function of all system states, which is independent of the virtual control laws. Therefore, only one NN is employed in the final step of the backstepping procedure and, subsequently, a novel adaptive neural controller (with modified weight updating laws) is presented to ensure that both the neural weight estimates and the system states are uniformly bounded in the mean-square sense under certain stability conditions. The control performance of the proposed scheme is illustrated through simulation results.
AbstractList This article is concerned with the exponential mean-square stabilization problem for a class of discrete-time strict-feedback nonlinear systems subject to multiplicative noises. The state-dependent multiplicative noise is assumed to occur randomly based on a stochastic variable obeying the Gaussian white distribution. To tackle the difficulties caused by the multiplicative noise, a novel backstepping-based control framework is developed to design both the virtual control laws and the actual control law for the original nonlinear system, and such a framework is fundamentally different from the traditional [Formula Omitted]-step predictor strategy. The proposed design scheme provides an effective way in establishing the relationship between the system states and the controlled errors, by which a noise-intensity-dependant stability condition is derived to ensure that the closed-loop system is exponentially mean-square stable for exactly known systems. To further cope with nonlinear modeling uncertainties, the radial basis function neural network (NN) is employed as a function approximator. In virtue of the proposed backstepping-based control framework, the ideal controller is characterized as a function of all system states, which is independent of the virtual control laws. Therefore, only one NN is employed in the final step of the backstepping procedure and, subsequently, a novel adaptive neural controller (with modified weight updating laws) is presented to ensure that both the neural weight estimates and the system states are uniformly bounded in the mean-square sense under certain stability conditions. The control performance of the proposed scheme is illustrated through simulation results.
This article is concerned with the exponential mean-square stabilization problem for a class of discrete-time strict-feedback nonlinear systems subject to multiplicative noises. The state-dependent multiplicative noise is assumed to occur randomly based on a stochastic variable obeying the Gaussian white distribution. To tackle the difficulties caused by the multiplicative noise, a novel backstepping-based control framework is developed to design both the virtual control laws and the actual control law for the original nonlinear system, and such a framework is fundamentally different from the traditional <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula>-step predictor strategy. The proposed design scheme provides an effective way in establishing the relationship between the system states and the controlled errors, by which a noise-intensity-dependant stability condition is derived to ensure that the closed-loop system is exponentially mean-square stable for exactly known systems. To further cope with nonlinear modeling uncertainties, the radial basis function neural network (NN) is employed as a function approximator. In virtue of the proposed backstepping-based control framework, the ideal controller is characterized as a function of all system states, which is independent of the virtual control laws. Therefore, only one NN is employed in the final step of the backstepping procedure and, subsequently, a novel adaptive neural controller (with modified weight updating laws) is presented to ensure that both the neural weight estimates and the system states are uniformly bounded in the mean-square sense under certain stability conditions. The control performance of the proposed scheme is illustrated through simulation results.
Author Wang, Min
Dong, Hongli
Han, Qing-Long
Wang, Zidong
Author_xml – sequence: 1
  givenname: Min
  orcidid: 0000-0001-7025-7651
  surname: Wang
  fullname: Wang, Min
  email: auwangmin@scut.edu.cn
  organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 2
  givenname: Zidong
  orcidid: 0000-0002-9576-7401
  surname: Wang
  fullname: Wang, Zidong
  email: Zidong.Wang@brunel.ac.uk
  organization: Department of Computer Science, Brunel University London, Uxbridge, Middlesex, U.K
– sequence: 3
  givenname: Hongli
  orcidid: 0000-0001-8531-6757
  surname: Dong
  fullname: Dong, Hongli
  email: shiningdhl@gmail.com
  organization: Institute of Complex Systems and Advanced Control, Northeast Petroleum University, Daqing, China
– sequence: 4
  givenname: Qing-Long
  orcidid: 0000-0002-7207-0716
  surname: Han
  fullname: Han, Qing-Long
  email: qhan@swin.edu.au
  organization: School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, Australia
BookMark eNp9kD1PwzAURS0EEqWwI7FYYk7xR-zaYykUkAoMrcQYuckLuKRxsN2iLvx2XBUxMDBZTzrnPr97gg5b1wJC55QMKCX6aj4aDxhhZMC0FmIoD1CPCqEyJhg_RD1CqMo0U_IYnYSwTKPMc9pDXyP85DbQ4Ik3K_h0_h3XzuNrU76HCF1n29fs2gSo8Ni10bsGuxrf2FB6iJDN7QrwLHpbxmwCUC2SlvLaxrZgPJ5tU8Yq4Bcb3_Djuom2a2xpot1AomyAcIqOatMEOPt5-2g-uZ2P77Pp893DeDTNSs55zFilcyqp0ibndDGUFajcUC44KGA1IaC4WOR0aPhQCsmrxJtK5TJJUIua99HlPrbz7mMNIRZLt_Zt2lgwQaQkudIkUXJPld6F4KEuShvTb3eHG9sUlBS7qotUdbGruvipOonkj9h5uzJ--59ysVcsAPzimmjB0wHfLQiLrA
CODEN IETAA9
CitedBy_id crossref_primary_10_1080_00207721_2021_1922953
crossref_primary_10_1080_00207721_2020_1817616
crossref_primary_10_1002_rnc_6623
crossref_primary_10_1002_rnc_6228
crossref_primary_10_1016_j_neucom_2021_12_100
crossref_primary_10_1177_01423312241269770
crossref_primary_10_1002_acs_3763
crossref_primary_10_1007_s12555_021_0921_3
crossref_primary_10_1109_TNNLS_2021_3054378
crossref_primary_10_1016_j_neucom_2021_12_069
crossref_primary_10_1007_s11071_024_10147_3
crossref_primary_10_1080_21642583_2021_1992684
crossref_primary_10_1016_j_ins_2022_02_034
crossref_primary_10_1080_00207721_2021_2024297
crossref_primary_10_1109_TSMC_2022_3207903
crossref_primary_10_1016_j_jfranklin_2024_107128
crossref_primary_10_1016_j_jfranklin_2022_12_020
crossref_primary_10_1007_s12555_021_0971_6
crossref_primary_10_1109_TASE_2023_3336976
crossref_primary_10_1016_j_ins_2022_01_009
crossref_primary_10_1016_j_neucom_2022_03_013
crossref_primary_10_1007_s11071_023_08989_4
crossref_primary_10_1109_ACCESS_2023_3280979
crossref_primary_10_1016_j_neucom_2021_12_056
crossref_primary_10_1080_00207721_2020_1852627
crossref_primary_10_1080_00207721_2024_2331810
crossref_primary_10_1109_TCSII_2023_3289847
crossref_primary_10_1109_TFUZZ_2021_3122231
crossref_primary_10_1016_j_jfranklin_2024_106661
crossref_primary_10_1007_s11063_021_10575_x
crossref_primary_10_1080_00207721_2022_2055192
crossref_primary_10_1016_j_neucom_2021_03_087
crossref_primary_10_1109_TSMC_2021_3098025
crossref_primary_10_1109_TSMC_2023_3260583
crossref_primary_10_1109_TCYB_2022_3222351
crossref_primary_10_1109_TCSII_2023_3264490
crossref_primary_10_1109_JMASS_2024_3507735
crossref_primary_10_1080_00207721_2023_2212652
crossref_primary_10_1177_09544070221083426
crossref_primary_10_1007_s11432_020_3138_7
crossref_primary_10_1016_j_engappai_2024_108453
crossref_primary_10_1080_00207721_2024_2423031
crossref_primary_10_1080_00207721_2022_2031338
crossref_primary_10_1002_rnc_7586
crossref_primary_10_1109_TFUZZ_2021_3055336
crossref_primary_10_1002_rnc_6759
crossref_primary_10_1109_TFUZZ_2022_3176681
crossref_primary_10_1002_rnc_5787
crossref_primary_10_1109_TAC_2021_3108587
crossref_primary_10_1109_TCYB_2020_3030276
crossref_primary_10_1007_s11571_022_09823_0
crossref_primary_10_1109_TASE_2023_3310621
crossref_primary_10_1109_TIE_2024_3379644
crossref_primary_10_1080_00207721_2022_2146989
crossref_primary_10_1016_j_chaos_2024_114477
crossref_primary_10_1080_00207721_2024_2343735
crossref_primary_10_1002_rnc_5793
crossref_primary_10_1109_TASE_2023_3278978
crossref_primary_10_1109_TFUZZ_2024_3364360
crossref_primary_10_1016_j_fss_2025_109311
crossref_primary_10_1007_s11071_022_07382_x
crossref_primary_10_1002_rnc_6391
crossref_primary_10_1080_00207721_2021_2005178
crossref_primary_10_1016_j_inffus_2021_06_006
crossref_primary_10_1080_00207179_2024_2373802
crossref_primary_10_1016_j_jfranklin_2022_11_025
crossref_primary_10_1080_00207721_2022_2051768
crossref_primary_10_1109_TCYB_2020_3026001
crossref_primary_10_1016_j_neunet_2024_107025
crossref_primary_10_1080_00207721_2022_2056772
crossref_primary_10_1049_cth2_12379
crossref_primary_10_1080_00207721_2024_2448591
crossref_primary_10_1016_j_ifacol_2024_11_132
crossref_primary_10_1109_TAC_2024_3358986
crossref_primary_10_1002_rnc_5208
crossref_primary_10_1002_rnc_5847
crossref_primary_10_1109_TCSII_2024_3369681
crossref_primary_10_1080_00207721_2023_2178865
crossref_primary_10_1109_TCYB_2021_3110645
crossref_primary_10_1088_2631_8695_ad63f6
crossref_primary_10_1109_TSMC_2021_3062419
crossref_primary_10_1137_23M1595035
crossref_primary_10_3390_math10091406
crossref_primary_10_1177_10775463241273046
crossref_primary_10_1016_j_neucom_2021_06_018
crossref_primary_10_1002_acs_3502
crossref_primary_10_1016_j_ijrefrig_2023_06_006
crossref_primary_10_1016_j_ins_2023_120014
crossref_primary_10_1080_00207721_2024_2388816
crossref_primary_10_1109_TCYB_2022_3140415
crossref_primary_10_1002_rnc_5997
crossref_primary_10_1109_TCYB_2023_3234366
crossref_primary_10_1109_TSMC_2021_3051335
crossref_primary_10_1109_TSMC_2024_3373400
crossref_primary_10_1002_rnc_6174
crossref_primary_10_1002_rnc_7382
crossref_primary_10_1109_TFUZZ_2022_3169852
crossref_primary_10_1016_j_neucom_2022_09_034
crossref_primary_10_1109_TFUZZ_2024_3379510
crossref_primary_10_3390_sym16070857
crossref_primary_10_1109_TFUZZ_2023_3299949
crossref_primary_10_1007_s40815_022_01434_5
crossref_primary_10_1109_JAS_2022_105542
crossref_primary_10_1016_j_isatra_2025_02_007
crossref_primary_10_1080_00207721_2024_2304133
crossref_primary_10_1080_21642583_2022_2074169
crossref_primary_10_1109_TFUZZ_2023_3256441
crossref_primary_10_1109_TNSE_2023_3346442
crossref_primary_10_1080_00207721_2022_2122902
crossref_primary_10_1080_00207721_2021_1895359
crossref_primary_10_1080_00207721_2021_1910878
crossref_primary_10_1109_TFUZZ_2023_3298333
crossref_primary_10_1109_ACCESS_2023_3234226
crossref_primary_10_1080_00207721_2023_2228809
crossref_primary_10_1002_rnc_6161
crossref_primary_10_1002_rnc_7018
crossref_primary_10_1080_21642583_2022_2063203
crossref_primary_10_1080_00207721_2021_1882614
crossref_primary_10_1080_00207721_2021_1998722
crossref_primary_10_1109_TAC_2023_3277866
crossref_primary_10_1080_00207721_2021_1998720
crossref_primary_10_1109_TFUZZ_2024_3383435
Cites_doi 10.1109/TSMC.2016.2645942
10.1080/00207179508921545
10.1016/S0005-1098(03)00032-3
10.1109/72.870049
10.1109/TIE.2015.2504553
10.1109/TAC.2005.864207
10.1007/s00498-012-0078-y
10.1109/TAC.2009.2024566
10.1109/TCYB.2017.2671032
10.1109/TNN.2010.2073719
10.1109/TAC.2015.2400713
10.1016/j.automatica.2006.10.020
10.1109/TCYB.2013.2262935
10.1109/TSP.2015.2422676
10.1109/TNNLS.2013.2251747
10.1109/TNNLS.2018.2869375
10.1016/j.ins.2013.09.043
10.1109/9.880641
10.1109/TSMC.2015.2466194
10.1016/S0167-6911(97)00068-6
10.1109/9.704978
10.1016/j.automatica.2008.11.017
10.1109/TAC.2008.929402
10.1109/9.788536
10.1007/s11432-010-0031-y
10.1016/j.automatica.2003.10.019
10.1109/JSEN.2017.2654325
10.1109/TNNLS.2013.2292704
10.1137/S0363012992232555
10.1109/TNN.2008.2000446
10.1016/j.automatica.2007.08.008
10.1080/00207179.2016.1219066
10.1109/TIE.2017.2758743
10.1109/TAC.2003.819287
10.1109/TNN.2009.2022159
10.1109/TNN.2008.2003290
10.23919/ACC.1991.4791778
10.1016/j.automatica.2011.01.025
10.1109/TNNLS.2015.2496622
10.1109/TAC.2013.2292453
10.1109/TNNLS.2014.2330336
10.1109/TII.2018.2839739
10.1109/TCYB.2018.2829713
10.1109/TAC.2014.2380671
10.1016/j.automatica.2015.11.008
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TAC.2020.2995576
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 1496
ExternalDocumentID 10_1109_TAC_2020_2995576
9095356
Genre orig-research
GrantInformation_xml – fundername: Royal Society
  funderid: 10.13039/501100000288
– fundername: Alexander von Humboldt Foundation of Germany
– fundername: National Natural Science Foundation of China
  grantid: 61773169; 61873058; 61873148; 61933007; 61973129
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2019B151502058
  funderid: 10.13039/501100003453
– fundername: Fundamental Research for the Central Universities of China
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c333t-2d9416189a431b76de84a1353e8e2f00e835b417a376563d2d9ad846416ef5f3
IEDL.DBID RIE
ISSN 0018-9286
IngestDate Mon Jun 30 10:15:37 EDT 2025
Tue Jul 01 03:36:35 EDT 2025
Thu Apr 24 23:03:12 EDT 2025
Wed Aug 27 02:47:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-2d9416189a431b76de84a1353e8e2f00e835b417a376563d2d9ad846416ef5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9576-7401
0000-0002-7207-0716
0000-0001-7025-7651
0000-0001-8531-6757
OpenAccessLink http://bura.brunel.ac.uk/bitstream/2438/23482/3/FullText.pdf
PQID 2506604890
PQPubID 85475
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TAC_2020_2995576
ieee_primary_9095356
crossref_primary_10_1109_TAC_2020_2995576
proquest_journals_2506604890
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
xu (ref41) 2014; 25
ref2
ref1
ref39
ref17
ref38
ref16
khalil (ref18) 2002
krstic (ref19) 1995
ref46
ref24
ref23
krishnan (ref20) 2001
ref48
ref26
ref47
ref25
ref42
ref44
ref21
ref43
yoo (ref45) 2009; 20
lewis (ref22) 2000; 11
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ge (ref13) 2008; 19
ref3
ref6
ref5
ref40
References_xml – ident: ref39
  doi: 10.1109/TSMC.2016.2645942
– ident: ref44
  doi: 10.1080/00207179508921545
– ident: ref11
  doi: 10.1016/S0005-1098(03)00032-3
– volume: 11
  start-page: 1178
  year: 2000
  ident: ref22
  article-title: Robust backstepping control of induction motors using neural networks
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.870049
– ident: ref5
  doi: 10.1109/TIE.2015.2504553
– ident: ref43
  doi: 10.1109/TAC.2005.864207
– year: 1995
  ident: ref19
  publication-title: Nonlinear and Adaptive Control Design
– ident: ref6
  doi: 10.1007/s00498-012-0078-y
– ident: ref28
  doi: 10.1109/TAC.2009.2024566
– ident: ref36
  doi: 10.1109/TCYB.2017.2671032
– ident: ref37
  doi: 10.1109/TNN.2010.2073719
– ident: ref31
  doi: 10.1109/TAC.2015.2400713
– ident: ref40
  doi: 10.1016/j.automatica.2006.10.020
– ident: ref2
  doi: 10.1109/TCYB.2013.2262935
– ident: ref10
  doi: 10.1109/TSP.2015.2422676
– ident: ref26
  doi: 10.1109/TNNLS.2013.2251747
– ident: ref48
  doi: 10.1109/TNNLS.2018.2869375
– ident: ref35
  doi: 10.1016/j.ins.2013.09.043
– ident: ref47
  doi: 10.1109/9.880641
– ident: ref15
  doi: 10.1109/TSMC.2015.2466194
– ident: ref8
  doi: 10.1016/S0167-6911(97)00068-6
– year: 2001
  ident: ref20
  publication-title: Electronic Motor Drives Modeling Analysis and Control
– ident: ref27
  doi: 10.1109/9.704978
– ident: ref32
  doi: 10.1016/j.automatica.2008.11.017
– ident: ref1
  doi: 10.1109/TAC.2008.929402
– ident: ref17
  doi: 10.1109/9.788536
– ident: ref33
  doi: 10.1007/s11432-010-0031-y
– ident: ref23
  doi: 10.1016/j.automatica.2003.10.019
– ident: ref25
  doi: 10.1109/JSEN.2017.2654325
– volume: 25
  start-page: 635
  year: 2014
  ident: ref41
  article-title: Reinforcement learning output feedback NN control using deterministic learning technique
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2292704
– year: 2002
  ident: ref18
  publication-title: Nonlinear Systems
– ident: ref21
  doi: 10.1137/S0363012992232555
– volume: 19
  start-page: 1599
  year: 2008
  ident: ref13
  article-title: Adaptive predictive control using neural network for a class of pure-feedback systems in discrete time
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2008.2000446
– ident: ref34
  doi: 10.1016/j.automatica.2007.08.008
– ident: ref29
  doi: 10.1080/00207179.2016.1219066
– ident: ref4
  doi: 10.1109/TIE.2017.2758743
– ident: ref12
  doi: 10.1109/TAC.2003.819287
– volume: 20
  start-page: 1209
  year: 2009
  ident: ref45
  article-title: Adaptive neural control for a class of strict-feedback nonlinear systems with state time delays
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2009.2022159
– ident: ref42
  doi: 10.1109/TNN.2008.2003290
– ident: ref30
  doi: 10.23919/ACC.1991.4791778
– ident: ref3
  doi: 10.1016/j.automatica.2011.01.025
– ident: ref38
  doi: 10.1109/TNNLS.2015.2496622
– ident: ref7
  doi: 10.1109/TAC.2013.2292453
– ident: ref24
  doi: 10.1109/TNNLS.2014.2330336
– ident: ref16
  doi: 10.1109/TII.2018.2839739
– ident: ref46
  doi: 10.1109/TCYB.2018.2829713
– ident: ref9
  doi: 10.1109/TAC.2014.2380671
– ident: ref14
  doi: 10.1016/j.automatica.2015.11.008
SSID ssj0016441
Score 2.6475775
Snippet This article is concerned with the exponential mean-square stabilization problem for a class of discrete-time strict-feedback nonlinear systems subject to...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1484
SubjectTerms Aadaptive control
Backstepping
backstepping-based control
Control stability
Control systems
Control theory
Controllers
Discrete time systems
discrete-time strict-feedback systems
Feedback control
Gaussian distribution
Lyapunov methods
multiplicative noises
Neural networks
neural networks (NNs)
Noise
Noise control
Noise intensity
Nonlinear systems
Radial basis function
Stability criteria
Stochastic processes
Weight
Title A Novel Framework for Backstepping-Based Control of Discrete-Time Strict-Feedback Nonlinear Systems With Multiplicative Noises
URI https://ieeexplore.ieee.org/document/9095356
https://www.proquest.com/docview/2506604890
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9swDCWSnrpD17UbmrUddNilQOVolvyhY5ItCAYkl6ZYboZl0VvQIikap4ce-ttLyY5RbEPRmw-kIYAS-SiRjwBfExsqlCbidJgKrpQwXCd5woUqQ60kxknuLvSns3hyrX4uokUHLtteGET0xWcYuE__lm_XxdZdlfW1I0eL4i50KXGre7XaFwMX12uvSwc4TNsnSaH788GIEsFQBOR6o8ixi7wIQX6myj-O2EeX8XuY7tZVF5XcBNvKBMXjX5SNb134IRw0MJMN6n3xATq4OoJ3L8gHj-FpwGbrB7xl4119FiMAy4au6b5CR9vwmw8pxlk2qsvZ2bpk35fkZghnc9c6wq4cvX_FxxQBDanR_zzvRn7PGiJ09mtZ_WHTumjR3w4-IEktN7j5CPPxj_lowptpDLyQUlY8tNolQ6nOCXOYJLaYqtxNzcAUw1IIJCxn1LckJ5cVxdKSfG4J3ZASllEpP8Hear3CE2CSnApaK0kgVZGwuS1VodGQezAFQcge9Hf2yYqGqdwNzLjNfMYidEYWzZxFs8aiPbhoNe5qlo5XZI-dgVq5xjY9ONttgaw5xpuM8GEck4_T4vP_tU5hP3RFLr6U5wz2qvstnhNKqcwXvz2fARh-40s
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Bb9MwFH7ayoHtAGwDrTDABy6TcGtiO4mPbaEqbO2FTuwWxfELVJvaaU134MBv59lJo4khxC2H58jSs7_32X7vewDvEhcplFZz2kwFV0pYbpI84UKVkVES4yT3F_rTWTy5UF8u9eUOvG9rYRAxJJ9hz3-Gt3y3Kjb-qqxvvDiajnfhEcV9HdXVWu2bgY_sNe7SFo7S9lFSmP58MKKjYCR6BL5ae32Re0EodFV5AMUhvoyfwnQ7szqt5Kq3qWyv-PmHaOP_Tv0ZPGmIJhvUK-MAdnB5CPv35AeP4NeAzVZ3eM3G2wwtRhSWDX3ZfYVeuOE7H1KUc2xUJ7SzVck-LghoiGlzXzzCvnqB_4qPKQZaGkb_C8ob-S1rpNDZt0X1g03rtMVwP3iHZLVY4_o5zMef5qMJb_ox8EJKWfHIGX8cSk1OrMMmscNU5b5vBqYYlUIgsTmrPiQ5gZaOpSP73BG_oUFY6lK-gM5ytcRjYJJgBZ2TZJAqLVzuSlUYtAQQtiAS2YX-1j9Z0WiV-5YZ11k4swiTkUcz79Gs8WgXTtsRN7VOxz9sj7yDWrvGN1042S6BrNnI64wYYhwTyhnx8u-j3sLjyXx6np1_np29gr3Ip7yExJ4T6FS3G3xNnKWyb8JS_Q0c5-aV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Framework+for+Backstepping-Based+Control+of+Discrete-Time+Strict-Feedback+Nonlinear+Systems+With+Multiplicative+Noises&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Wang%2C+Min&rft.au=Wang%2C+Zidong&rft.au=Dong%2C+Hongli&rft.au=Han%2C+Qing-Long&rft.date=2021-04-01&rft.pub=IEEE&rft.issn=0018-9286&rft.volume=66&rft.issue=4&rft.spage=1484&rft.epage=1496&rft_id=info:doi/10.1109%2FTAC.2020.2995576&rft.externalDocID=9095356
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon