A Novel Framework for Backstepping-Based Control of Discrete-Time Strict-Feedback Nonlinear Systems With Multiplicative Noises
This article is concerned with the exponential mean-square stabilization problem for a class of discrete-time strict-feedback nonlinear systems subject to multiplicative noises. The state-dependent multiplicative noise is assumed to occur randomly based on a stochastic variable obeying the Gaussian...
Saved in:
Published in | IEEE transactions on automatic control Vol. 66; no. 4; pp. 1484 - 1496 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article is concerned with the exponential mean-square stabilization problem for a class of discrete-time strict-feedback nonlinear systems subject to multiplicative noises. The state-dependent multiplicative noise is assumed to occur randomly based on a stochastic variable obeying the Gaussian white distribution. To tackle the difficulties caused by the multiplicative noise, a novel backstepping-based control framework is developed to design both the virtual control laws and the actual control law for the original nonlinear system, and such a framework is fundamentally different from the traditional <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula>-step predictor strategy. The proposed design scheme provides an effective way in establishing the relationship between the system states and the controlled errors, by which a noise-intensity-dependant stability condition is derived to ensure that the closed-loop system is exponentially mean-square stable for exactly known systems. To further cope with nonlinear modeling uncertainties, the radial basis function neural network (NN) is employed as a function approximator. In virtue of the proposed backstepping-based control framework, the ideal controller is characterized as a function of all system states, which is independent of the virtual control laws. Therefore, only one NN is employed in the final step of the backstepping procedure and, subsequently, a novel adaptive neural controller (with modified weight updating laws) is presented to ensure that both the neural weight estimates and the system states are uniformly bounded in the mean-square sense under certain stability conditions. The control performance of the proposed scheme is illustrated through simulation results. |
---|---|
AbstractList | This article is concerned with the exponential mean-square stabilization problem for a class of discrete-time strict-feedback nonlinear systems subject to multiplicative noises. The state-dependent multiplicative noise is assumed to occur randomly based on a stochastic variable obeying the Gaussian white distribution. To tackle the difficulties caused by the multiplicative noise, a novel backstepping-based control framework is developed to design both the virtual control laws and the actual control law for the original nonlinear system, and such a framework is fundamentally different from the traditional [Formula Omitted]-step predictor strategy. The proposed design scheme provides an effective way in establishing the relationship between the system states and the controlled errors, by which a noise-intensity-dependant stability condition is derived to ensure that the closed-loop system is exponentially mean-square stable for exactly known systems. To further cope with nonlinear modeling uncertainties, the radial basis function neural network (NN) is employed as a function approximator. In virtue of the proposed backstepping-based control framework, the ideal controller is characterized as a function of all system states, which is independent of the virtual control laws. Therefore, only one NN is employed in the final step of the backstepping procedure and, subsequently, a novel adaptive neural controller (with modified weight updating laws) is presented to ensure that both the neural weight estimates and the system states are uniformly bounded in the mean-square sense under certain stability conditions. The control performance of the proposed scheme is illustrated through simulation results. This article is concerned with the exponential mean-square stabilization problem for a class of discrete-time strict-feedback nonlinear systems subject to multiplicative noises. The state-dependent multiplicative noise is assumed to occur randomly based on a stochastic variable obeying the Gaussian white distribution. To tackle the difficulties caused by the multiplicative noise, a novel backstepping-based control framework is developed to design both the virtual control laws and the actual control law for the original nonlinear system, and such a framework is fundamentally different from the traditional <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula>-step predictor strategy. The proposed design scheme provides an effective way in establishing the relationship between the system states and the controlled errors, by which a noise-intensity-dependant stability condition is derived to ensure that the closed-loop system is exponentially mean-square stable for exactly known systems. To further cope with nonlinear modeling uncertainties, the radial basis function neural network (NN) is employed as a function approximator. In virtue of the proposed backstepping-based control framework, the ideal controller is characterized as a function of all system states, which is independent of the virtual control laws. Therefore, only one NN is employed in the final step of the backstepping procedure and, subsequently, a novel adaptive neural controller (with modified weight updating laws) is presented to ensure that both the neural weight estimates and the system states are uniformly bounded in the mean-square sense under certain stability conditions. The control performance of the proposed scheme is illustrated through simulation results. |
Author | Wang, Min Dong, Hongli Han, Qing-Long Wang, Zidong |
Author_xml | – sequence: 1 givenname: Min orcidid: 0000-0001-7025-7651 surname: Wang fullname: Wang, Min email: auwangmin@scut.edu.cn organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 2 givenname: Zidong orcidid: 0000-0002-9576-7401 surname: Wang fullname: Wang, Zidong email: Zidong.Wang@brunel.ac.uk organization: Department of Computer Science, Brunel University London, Uxbridge, Middlesex, U.K – sequence: 3 givenname: Hongli orcidid: 0000-0001-8531-6757 surname: Dong fullname: Dong, Hongli email: shiningdhl@gmail.com organization: Institute of Complex Systems and Advanced Control, Northeast Petroleum University, Daqing, China – sequence: 4 givenname: Qing-Long orcidid: 0000-0002-7207-0716 surname: Han fullname: Han, Qing-Long email: qhan@swin.edu.au organization: School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, Australia |
BookMark | eNp9kD1PwzAURS0EEqWwI7FYYk7xR-zaYykUkAoMrcQYuckLuKRxsN2iLvx2XBUxMDBZTzrnPr97gg5b1wJC55QMKCX6aj4aDxhhZMC0FmIoD1CPCqEyJhg_RD1CqMo0U_IYnYSwTKPMc9pDXyP85DbQ4Ik3K_h0_h3XzuNrU76HCF1n29fs2gSo8Ni10bsGuxrf2FB6iJDN7QrwLHpbxmwCUC2SlvLaxrZgPJ5tU8Yq4Bcb3_Djuom2a2xpot1AomyAcIqOatMEOPt5-2g-uZ2P77Pp893DeDTNSs55zFilcyqp0ibndDGUFajcUC44KGA1IaC4WOR0aPhQCsmrxJtK5TJJUIua99HlPrbz7mMNIRZLt_Zt2lgwQaQkudIkUXJPld6F4KEuShvTb3eHG9sUlBS7qotUdbGruvipOonkj9h5uzJ--59ysVcsAPzimmjB0wHfLQiLrA |
CODEN | IETAA9 |
CitedBy_id | crossref_primary_10_1080_00207721_2021_1922953 crossref_primary_10_1080_00207721_2020_1817616 crossref_primary_10_1002_rnc_6623 crossref_primary_10_1002_rnc_6228 crossref_primary_10_1016_j_neucom_2021_12_100 crossref_primary_10_1177_01423312241269770 crossref_primary_10_1002_acs_3763 crossref_primary_10_1007_s12555_021_0921_3 crossref_primary_10_1109_TNNLS_2021_3054378 crossref_primary_10_1016_j_neucom_2021_12_069 crossref_primary_10_1007_s11071_024_10147_3 crossref_primary_10_1080_21642583_2021_1992684 crossref_primary_10_1016_j_ins_2022_02_034 crossref_primary_10_1080_00207721_2021_2024297 crossref_primary_10_1109_TSMC_2022_3207903 crossref_primary_10_1016_j_jfranklin_2024_107128 crossref_primary_10_1016_j_jfranklin_2022_12_020 crossref_primary_10_1007_s12555_021_0971_6 crossref_primary_10_1109_TASE_2023_3336976 crossref_primary_10_1016_j_ins_2022_01_009 crossref_primary_10_1016_j_neucom_2022_03_013 crossref_primary_10_1007_s11071_023_08989_4 crossref_primary_10_1109_ACCESS_2023_3280979 crossref_primary_10_1016_j_neucom_2021_12_056 crossref_primary_10_1080_00207721_2020_1852627 crossref_primary_10_1080_00207721_2024_2331810 crossref_primary_10_1109_TCSII_2023_3289847 crossref_primary_10_1109_TFUZZ_2021_3122231 crossref_primary_10_1016_j_jfranklin_2024_106661 crossref_primary_10_1007_s11063_021_10575_x crossref_primary_10_1080_00207721_2022_2055192 crossref_primary_10_1016_j_neucom_2021_03_087 crossref_primary_10_1109_TSMC_2021_3098025 crossref_primary_10_1109_TSMC_2023_3260583 crossref_primary_10_1109_TCYB_2022_3222351 crossref_primary_10_1109_TCSII_2023_3264490 crossref_primary_10_1109_JMASS_2024_3507735 crossref_primary_10_1080_00207721_2023_2212652 crossref_primary_10_1177_09544070221083426 crossref_primary_10_1007_s11432_020_3138_7 crossref_primary_10_1016_j_engappai_2024_108453 crossref_primary_10_1080_00207721_2024_2423031 crossref_primary_10_1080_00207721_2022_2031338 crossref_primary_10_1002_rnc_7586 crossref_primary_10_1109_TFUZZ_2021_3055336 crossref_primary_10_1002_rnc_6759 crossref_primary_10_1109_TFUZZ_2022_3176681 crossref_primary_10_1002_rnc_5787 crossref_primary_10_1109_TAC_2021_3108587 crossref_primary_10_1109_TCYB_2020_3030276 crossref_primary_10_1007_s11571_022_09823_0 crossref_primary_10_1109_TASE_2023_3310621 crossref_primary_10_1109_TIE_2024_3379644 crossref_primary_10_1080_00207721_2022_2146989 crossref_primary_10_1016_j_chaos_2024_114477 crossref_primary_10_1080_00207721_2024_2343735 crossref_primary_10_1002_rnc_5793 crossref_primary_10_1109_TASE_2023_3278978 crossref_primary_10_1109_TFUZZ_2024_3364360 crossref_primary_10_1016_j_fss_2025_109311 crossref_primary_10_1007_s11071_022_07382_x crossref_primary_10_1002_rnc_6391 crossref_primary_10_1080_00207721_2021_2005178 crossref_primary_10_1016_j_inffus_2021_06_006 crossref_primary_10_1080_00207179_2024_2373802 crossref_primary_10_1016_j_jfranklin_2022_11_025 crossref_primary_10_1080_00207721_2022_2051768 crossref_primary_10_1109_TCYB_2020_3026001 crossref_primary_10_1016_j_neunet_2024_107025 crossref_primary_10_1080_00207721_2022_2056772 crossref_primary_10_1049_cth2_12379 crossref_primary_10_1080_00207721_2024_2448591 crossref_primary_10_1016_j_ifacol_2024_11_132 crossref_primary_10_1109_TAC_2024_3358986 crossref_primary_10_1002_rnc_5208 crossref_primary_10_1002_rnc_5847 crossref_primary_10_1109_TCSII_2024_3369681 crossref_primary_10_1080_00207721_2023_2178865 crossref_primary_10_1109_TCYB_2021_3110645 crossref_primary_10_1088_2631_8695_ad63f6 crossref_primary_10_1109_TSMC_2021_3062419 crossref_primary_10_1137_23M1595035 crossref_primary_10_3390_math10091406 crossref_primary_10_1177_10775463241273046 crossref_primary_10_1016_j_neucom_2021_06_018 crossref_primary_10_1002_acs_3502 crossref_primary_10_1016_j_ijrefrig_2023_06_006 crossref_primary_10_1016_j_ins_2023_120014 crossref_primary_10_1080_00207721_2024_2388816 crossref_primary_10_1109_TCYB_2022_3140415 crossref_primary_10_1002_rnc_5997 crossref_primary_10_1109_TCYB_2023_3234366 crossref_primary_10_1109_TSMC_2021_3051335 crossref_primary_10_1109_TSMC_2024_3373400 crossref_primary_10_1002_rnc_6174 crossref_primary_10_1002_rnc_7382 crossref_primary_10_1109_TFUZZ_2022_3169852 crossref_primary_10_1016_j_neucom_2022_09_034 crossref_primary_10_1109_TFUZZ_2024_3379510 crossref_primary_10_3390_sym16070857 crossref_primary_10_1109_TFUZZ_2023_3299949 crossref_primary_10_1007_s40815_022_01434_5 crossref_primary_10_1109_JAS_2022_105542 crossref_primary_10_1016_j_isatra_2025_02_007 crossref_primary_10_1080_00207721_2024_2304133 crossref_primary_10_1080_21642583_2022_2074169 crossref_primary_10_1109_TFUZZ_2023_3256441 crossref_primary_10_1109_TNSE_2023_3346442 crossref_primary_10_1080_00207721_2022_2122902 crossref_primary_10_1080_00207721_2021_1895359 crossref_primary_10_1080_00207721_2021_1910878 crossref_primary_10_1109_TFUZZ_2023_3298333 crossref_primary_10_1109_ACCESS_2023_3234226 crossref_primary_10_1080_00207721_2023_2228809 crossref_primary_10_1002_rnc_6161 crossref_primary_10_1002_rnc_7018 crossref_primary_10_1080_21642583_2022_2063203 crossref_primary_10_1080_00207721_2021_1882614 crossref_primary_10_1080_00207721_2021_1998722 crossref_primary_10_1109_TAC_2023_3277866 crossref_primary_10_1080_00207721_2021_1998720 crossref_primary_10_1109_TFUZZ_2024_3383435 |
Cites_doi | 10.1109/TSMC.2016.2645942 10.1080/00207179508921545 10.1016/S0005-1098(03)00032-3 10.1109/72.870049 10.1109/TIE.2015.2504553 10.1109/TAC.2005.864207 10.1007/s00498-012-0078-y 10.1109/TAC.2009.2024566 10.1109/TCYB.2017.2671032 10.1109/TNN.2010.2073719 10.1109/TAC.2015.2400713 10.1016/j.automatica.2006.10.020 10.1109/TCYB.2013.2262935 10.1109/TSP.2015.2422676 10.1109/TNNLS.2013.2251747 10.1109/TNNLS.2018.2869375 10.1016/j.ins.2013.09.043 10.1109/9.880641 10.1109/TSMC.2015.2466194 10.1016/S0167-6911(97)00068-6 10.1109/9.704978 10.1016/j.automatica.2008.11.017 10.1109/TAC.2008.929402 10.1109/9.788536 10.1007/s11432-010-0031-y 10.1016/j.automatica.2003.10.019 10.1109/JSEN.2017.2654325 10.1109/TNNLS.2013.2292704 10.1137/S0363012992232555 10.1109/TNN.2008.2000446 10.1016/j.automatica.2007.08.008 10.1080/00207179.2016.1219066 10.1109/TIE.2017.2758743 10.1109/TAC.2003.819287 10.1109/TNN.2009.2022159 10.1109/TNN.2008.2003290 10.23919/ACC.1991.4791778 10.1016/j.automatica.2011.01.025 10.1109/TNNLS.2015.2496622 10.1109/TAC.2013.2292453 10.1109/TNNLS.2014.2330336 10.1109/TII.2018.2839739 10.1109/TCYB.2018.2829713 10.1109/TAC.2014.2380671 10.1016/j.automatica.2015.11.008 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TAC.2020.2995576 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2523 |
EndPage | 1496 |
ExternalDocumentID | 10_1109_TAC_2020_2995576 9095356 |
Genre | orig-research |
GrantInformation_xml | – fundername: Royal Society funderid: 10.13039/501100000288 – fundername: Alexander von Humboldt Foundation of Germany – fundername: National Natural Science Foundation of China grantid: 61773169; 61873058; 61873148; 61933007; 61973129 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Guangdong Province grantid: 2019B151502058 funderid: 10.13039/501100003453 – fundername: Fundamental Research for the Central Universities of China |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYOK AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c333t-2d9416189a431b76de84a1353e8e2f00e835b417a376563d2d9ad846416ef5f3 |
IEDL.DBID | RIE |
ISSN | 0018-9286 |
IngestDate | Mon Jun 30 10:15:37 EDT 2025 Tue Jul 01 03:36:35 EDT 2025 Thu Apr 24 23:03:12 EDT 2025 Wed Aug 27 02:47:28 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c333t-2d9416189a431b76de84a1353e8e2f00e835b417a376563d2d9ad846416ef5f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9576-7401 0000-0002-7207-0716 0000-0001-7025-7651 0000-0001-8531-6757 |
OpenAccessLink | http://bura.brunel.ac.uk/bitstream/2438/23482/3/FullText.pdf |
PQID | 2506604890 |
PQPubID | 85475 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1109_TAC_2020_2995576 ieee_primary_9095356 crossref_primary_10_1109_TAC_2020_2995576 proquest_journals_2506604890 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on automatic control |
PublicationTitleAbbrev | TAC |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 xu (ref41) 2014; 25 ref2 ref1 ref39 ref17 ref38 ref16 khalil (ref18) 2002 krstic (ref19) 1995 ref46 ref24 ref23 krishnan (ref20) 2001 ref48 ref26 ref47 ref25 ref42 ref44 ref21 ref43 yoo (ref45) 2009; 20 lewis (ref22) 2000; 11 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ge (ref13) 2008; 19 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref39 doi: 10.1109/TSMC.2016.2645942 – ident: ref44 doi: 10.1080/00207179508921545 – ident: ref11 doi: 10.1016/S0005-1098(03)00032-3 – volume: 11 start-page: 1178 year: 2000 ident: ref22 article-title: Robust backstepping control of induction motors using neural networks publication-title: IEEE Trans Neural Netw doi: 10.1109/72.870049 – ident: ref5 doi: 10.1109/TIE.2015.2504553 – ident: ref43 doi: 10.1109/TAC.2005.864207 – year: 1995 ident: ref19 publication-title: Nonlinear and Adaptive Control Design – ident: ref6 doi: 10.1007/s00498-012-0078-y – ident: ref28 doi: 10.1109/TAC.2009.2024566 – ident: ref36 doi: 10.1109/TCYB.2017.2671032 – ident: ref37 doi: 10.1109/TNN.2010.2073719 – ident: ref31 doi: 10.1109/TAC.2015.2400713 – ident: ref40 doi: 10.1016/j.automatica.2006.10.020 – ident: ref2 doi: 10.1109/TCYB.2013.2262935 – ident: ref10 doi: 10.1109/TSP.2015.2422676 – ident: ref26 doi: 10.1109/TNNLS.2013.2251747 – ident: ref48 doi: 10.1109/TNNLS.2018.2869375 – ident: ref35 doi: 10.1016/j.ins.2013.09.043 – ident: ref47 doi: 10.1109/9.880641 – ident: ref15 doi: 10.1109/TSMC.2015.2466194 – ident: ref8 doi: 10.1016/S0167-6911(97)00068-6 – year: 2001 ident: ref20 publication-title: Electronic Motor Drives Modeling Analysis and Control – ident: ref27 doi: 10.1109/9.704978 – ident: ref32 doi: 10.1016/j.automatica.2008.11.017 – ident: ref1 doi: 10.1109/TAC.2008.929402 – ident: ref17 doi: 10.1109/9.788536 – ident: ref33 doi: 10.1007/s11432-010-0031-y – ident: ref23 doi: 10.1016/j.automatica.2003.10.019 – ident: ref25 doi: 10.1109/JSEN.2017.2654325 – volume: 25 start-page: 635 year: 2014 ident: ref41 article-title: Reinforcement learning output feedback NN control using deterministic learning technique publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2292704 – year: 2002 ident: ref18 publication-title: Nonlinear Systems – ident: ref21 doi: 10.1137/S0363012992232555 – volume: 19 start-page: 1599 year: 2008 ident: ref13 article-title: Adaptive predictive control using neural network for a class of pure-feedback systems in discrete time publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2008.2000446 – ident: ref34 doi: 10.1016/j.automatica.2007.08.008 – ident: ref29 doi: 10.1080/00207179.2016.1219066 – ident: ref4 doi: 10.1109/TIE.2017.2758743 – ident: ref12 doi: 10.1109/TAC.2003.819287 – volume: 20 start-page: 1209 year: 2009 ident: ref45 article-title: Adaptive neural control for a class of strict-feedback nonlinear systems with state time delays publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2009.2022159 – ident: ref42 doi: 10.1109/TNN.2008.2003290 – ident: ref30 doi: 10.23919/ACC.1991.4791778 – ident: ref3 doi: 10.1016/j.automatica.2011.01.025 – ident: ref38 doi: 10.1109/TNNLS.2015.2496622 – ident: ref7 doi: 10.1109/TAC.2013.2292453 – ident: ref24 doi: 10.1109/TNNLS.2014.2330336 – ident: ref16 doi: 10.1109/TII.2018.2839739 – ident: ref46 doi: 10.1109/TCYB.2018.2829713 – ident: ref9 doi: 10.1109/TAC.2014.2380671 – ident: ref14 doi: 10.1016/j.automatica.2015.11.008 |
SSID | ssj0016441 |
Score | 2.6475775 |
Snippet | This article is concerned with the exponential mean-square stabilization problem for a class of discrete-time strict-feedback nonlinear systems subject to... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1484 |
SubjectTerms | Aadaptive control Backstepping backstepping-based control Control stability Control systems Control theory Controllers Discrete time systems discrete-time strict-feedback systems Feedback control Gaussian distribution Lyapunov methods multiplicative noises Neural networks neural networks (NNs) Noise Noise control Noise intensity Nonlinear systems Radial basis function Stability criteria Stochastic processes Weight |
Title | A Novel Framework for Backstepping-Based Control of Discrete-Time Strict-Feedback Nonlinear Systems With Multiplicative Noises |
URI | https://ieeexplore.ieee.org/document/9095356 https://www.proquest.com/docview/2506604890 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9swDCWSnrpD17UbmrUddNilQOVolvyhY5ItCAYkl6ZYboZl0VvQIikap4ce-ttLyY5RbEPRmw-kIYAS-SiRjwBfExsqlCbidJgKrpQwXCd5woUqQ60kxknuLvSns3hyrX4uokUHLtteGET0xWcYuE__lm_XxdZdlfW1I0eL4i50KXGre7XaFwMX12uvSwc4TNsnSaH788GIEsFQBOR6o8ixi7wIQX6myj-O2EeX8XuY7tZVF5XcBNvKBMXjX5SNb134IRw0MJMN6n3xATq4OoJ3L8gHj-FpwGbrB7xl4119FiMAy4au6b5CR9vwmw8pxlk2qsvZ2bpk35fkZghnc9c6wq4cvX_FxxQBDanR_zzvRn7PGiJ09mtZ_WHTumjR3w4-IEktN7j5CPPxj_lowptpDLyQUlY8tNolQ6nOCXOYJLaYqtxNzcAUw1IIJCxn1LckJ5cVxdKSfG4J3ZASllEpP8Hear3CE2CSnApaK0kgVZGwuS1VodGQezAFQcge9Hf2yYqGqdwNzLjNfMYidEYWzZxFs8aiPbhoNe5qlo5XZI-dgVq5xjY9ONttgaw5xpuM8GEck4_T4vP_tU5hP3RFLr6U5wz2qvstnhNKqcwXvz2fARh-40s |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Bb9MwFH7ayoHtAGwDrTDABy6TcGtiO4mPbaEqbO2FTuwWxfELVJvaaU134MBv59lJo4khxC2H58jSs7_32X7vewDvEhcplFZz2kwFV0pYbpI84UKVkVES4yT3F_rTWTy5UF8u9eUOvG9rYRAxJJ9hz3-Gt3y3Kjb-qqxvvDiajnfhEcV9HdXVWu2bgY_sNe7SFo7S9lFSmP58MKKjYCR6BL5ae32Re0EodFV5AMUhvoyfwnQ7szqt5Kq3qWyv-PmHaOP_Tv0ZPGmIJhvUK-MAdnB5CPv35AeP4NeAzVZ3eM3G2wwtRhSWDX3ZfYVeuOE7H1KUc2xUJ7SzVck-LghoiGlzXzzCvnqB_4qPKQZaGkb_C8ob-S1rpNDZt0X1g03rtMVwP3iHZLVY4_o5zMef5qMJb_ox8EJKWfHIGX8cSk1OrMMmscNU5b5vBqYYlUIgsTmrPiQ5gZaOpSP73BG_oUFY6lK-gM5ytcRjYJJgBZ2TZJAqLVzuSlUYtAQQtiAS2YX-1j9Z0WiV-5YZ11k4swiTkUcz79Gs8WgXTtsRN7VOxz9sj7yDWrvGN1042S6BrNnI64wYYhwTyhnx8u-j3sLjyXx6np1_np29gr3Ip7yExJ4T6FS3G3xNnKWyb8JS_Q0c5-aV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Framework+for+Backstepping-Based+Control+of+Discrete-Time+Strict-Feedback+Nonlinear+Systems+With+Multiplicative+Noises&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Wang%2C+Min&rft.au=Wang%2C+Zidong&rft.au=Dong%2C+Hongli&rft.au=Han%2C+Qing-Long&rft.date=2021-04-01&rft.pub=IEEE&rft.issn=0018-9286&rft.volume=66&rft.issue=4&rft.spage=1484&rft.epage=1496&rft_id=info:doi/10.1109%2FTAC.2020.2995576&rft.externalDocID=9095356 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |