A Novel Framework for Backstepping-Based Control of Discrete-Time Strict-Feedback Nonlinear Systems With Multiplicative Noises
This article is concerned with the exponential mean-square stabilization problem for a class of discrete-time strict-feedback nonlinear systems subject to multiplicative noises. The state-dependent multiplicative noise is assumed to occur randomly based on a stochastic variable obeying the Gaussian...
Saved in:
Published in | IEEE transactions on automatic control Vol. 66; no. 4; pp. 1484 - 1496 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This article is concerned with the exponential mean-square stabilization problem for a class of discrete-time strict-feedback nonlinear systems subject to multiplicative noises. The state-dependent multiplicative noise is assumed to occur randomly based on a stochastic variable obeying the Gaussian white distribution. To tackle the difficulties caused by the multiplicative noise, a novel backstepping-based control framework is developed to design both the virtual control laws and the actual control law for the original nonlinear system, and such a framework is fundamentally different from the traditional <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula>-step predictor strategy. The proposed design scheme provides an effective way in establishing the relationship between the system states and the controlled errors, by which a noise-intensity-dependant stability condition is derived to ensure that the closed-loop system is exponentially mean-square stable for exactly known systems. To further cope with nonlinear modeling uncertainties, the radial basis function neural network (NN) is employed as a function approximator. In virtue of the proposed backstepping-based control framework, the ideal controller is characterized as a function of all system states, which is independent of the virtual control laws. Therefore, only one NN is employed in the final step of the backstepping procedure and, subsequently, a novel adaptive neural controller (with modified weight updating laws) is presented to ensure that both the neural weight estimates and the system states are uniformly bounded in the mean-square sense under certain stability conditions. The control performance of the proposed scheme is illustrated through simulation results. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2020.2995576 |