Torn-Paper Coding

We consider the problem of communicating over a channel that randomly "tears" the message block into small pieces of different sizes and shuffles them. For the binary torn-paper channel with block length <inline-formula> <tex-math notation="LaTeX">n </tex-math>&...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 67; no. 12; pp. 7904 - 7913
Main Authors Shomorony, Ilan, Vahid, Alireza
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We consider the problem of communicating over a channel that randomly "tears" the message block into small pieces of different sizes and shuffles them. For the binary torn-paper channel with block length <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> and pieces of length <inline-formula> <tex-math notation="LaTeX">{\mathrm{ Geometric}}(p_{n}) </tex-math></inline-formula>, we characterize the capacity as <inline-formula> <tex-math notation="LaTeX">C = e^{-\alpha } </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">\alpha = \lim _{n\to \infty } p_{n} \log n </tex-math></inline-formula>. Our results show that the case of <inline-formula> <tex-math notation="LaTeX">{\mathrm{ Geometric}}(p_{n}) </tex-math></inline-formula>-length fragments and the case of deterministic length-<inline-formula> <tex-math notation="LaTeX">(1/p_{n}) </tex-math></inline-formula> fragments are qualitatively different and, surprisingly, the capacity of the former is larger. Intuitively, this is due to the fact that, in the random fragments case, large fragments are sometimes observed, which boosts the capacity.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2021.3120920