Dynamic Variable Time-Stepping Schemes for Real-Time FPGA-Based Nonlinear Electromagnetic Transient Emulation

Electromagnetic transient (EMT) simulation of nonlinear elements in power systems is a particular challenge due to the requirements of an accurate representation and an efficient solution. The existing real-time simulators utilize a piecewise linear representation along with a fixed time step for th...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 64; no. 5; pp. 4006 - 4016
Main Authors Zhuoxuan Shen, Dinavahi, Venkata
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Electromagnetic transient (EMT) simulation of nonlinear elements in power systems is a particular challenge due to the requirements of an accurate representation and an efficient solution. The existing real-time simulators utilize a piecewise linear representation along with a fixed time step for the solution of nonlinear elements. This paper proposes the detailed methodologies for applying variable time stepping to real-time EMT simulation to improve the simulation accuracy and efficiency. The challenges, the feasible solutions, and corresponding restrictions of applying various variable time-stepping schemes along with nonlinear element solution methods in real time are discussed. The offline simulation and the real-time hardware emulation of two case studies, a full-bridge diode circuit and a power transmission system, are presented. The case studies were implemented on the field-programmable gate array device (Xilinx Virtex-7 XC7VX485T) in real time using high-level synthesis tool to achieve a parallelized and pipelined hardware design with minimum coding effort. The real-time emulation results captured by an oscilloscope are validated against the offline simulation on Saber and PSCAD/EMTDC software tools.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2017.2652403