Inscription of Polymer Optical Fiber Bragg Grating at 962 nm and Its Potential in Strain Sensing

Fiber Bragg grating (FBG) with a 962-nm Bragg wavelength was fabricated in trans-4-stilbenemethanol doped poly(methyl methacrylate) polymer optical fibers (POFs) using a phase mask with 17% zeroth-order diffraction for the inscription wavelength of 325 nm. The effect of zeroth-order diffraction of t...

Full description

Saved in:
Bibliographic Details
Published inIEEE photonics technology letters Vol. 22; no. 21; pp. 1562 - 1564
Main Authors Zhang, Zhi Feng, Zhang, Chi, Tao, Xiao Ming, Wang, Guang Feng, Peng, Gang Ding
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Fiber Bragg grating (FBG) with a 962-nm Bragg wavelength was fabricated in trans-4-stilbenemethanol doped poly(methyl methacrylate) polymer optical fibers (POFs) using a phase mask with 17% zeroth-order diffraction for the inscription wavelength of 325 nm. The effect of zeroth-order diffraction of the phase masks on FGB in POF was first examined by observing micrographs of the gratings. A linear relationship between the fiber axial strain and shift of the FBG was observed up to 6.5% tensile strain with a strain sensitivity of 0.916 pm/ . However, this shift was notably affected by the time-dependent stress relaxation in the fiber, especially when the FBG was subject to a relatively higher strain > 2%.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1041-1135
1941-0174
DOI:10.1109/LPT.2010.2069090