Deep Learning-Based Channel Estimation for Beamspace mmWave Massive MIMO Systems
Channel estimation is very challenging when the receiver is equipped with a limited number of radio-frequency (RF) chains in beamspace millimeter-wave massive multiple-input and multiple-output systems. To solve this problem, we exploit a learned denoising-based approximate message passing (LDAMP) n...
Saved in:
Published in | IEEE wireless communications letters Vol. 7; no. 5; pp. 852 - 855 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Channel estimation is very challenging when the receiver is equipped with a limited number of radio-frequency (RF) chains in beamspace millimeter-wave massive multiple-input and multiple-output systems. To solve this problem, we exploit a learned denoising-based approximate message passing (LDAMP) network. This neural network can learn channel structure and estimate channel from a large number of training data. Furthermore, we provide an analytical framework on the asymptotic performance of the channel estimator. Based on our analysis and simulation results, the LDAMP neural network significantly outperforms state-of-the-art compressed sensing-based algorithms even when the receiver is equipped with a small number of RF chains. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2162-2337 2162-2345 |
DOI: | 10.1109/LWC.2018.2832128 |