Coherent Free-Space Optical Communications: Opportunities and Challenges

The ever-increasing data rate demand for wireless systems is pushing the physical limits of standalone radio-frequency communications, thus fostering the blooming of novel high-capacity optical wireless solutions. This imminent penetration of optical communication technologies into the wireless doma...

Full description

Saved in:
Bibliographic Details
Published inJournal of lightwave technology Vol. 40; no. 10; pp. 3173 - 3186
Main Authors Guiomar, Fernando P., Fernandes, Marco A., Nascimento, Jose Leonardo, Rodrigues, Vera, Monteiro, Paulo P.
Format Journal Article
LanguageEnglish
Published New York IEEE 15.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0733-8724
1558-2213
DOI10.1109/JLT.2022.3164736

Cover

Loading…
More Information
Summary:The ever-increasing data rate demand for wireless systems is pushing the physical limits of standalone radio-frequency communications, thus fostering the blooming of novel high-capacity optical wireless solutions. This imminent penetration of optical communication technologies into the wireless domain opens up a set of novel opportunities for the development of a new generation of wireless systems providing unprecedented capacity. Unlocking the full potential of free-space optics (FSO) transmission can only be achieved through a seamless convergence between the optical fiber and optical wireless domains. This will allow taking advantage of the staggering progress that has been made on fiber-based communications during the last decades, namely leveraging on the latest generation of Terabit-capable coherent optical transceivers. On the other hand, the development of these high-capacity optical wireless systems still faces a set of critical challenges, namely regarding the impact of atmospheric turbulence and pointing errors. In this work, we provide an in-depth experimental analysis of the main potentialities and criticalities associated with the development of ultra-high-capacity FSO communications, ultimately leading to the long-term (48-hours) demonstration of a coherent FSO transmission system delivering more than 800 Gbps over <inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula>42 m link length, in an outdoor deployment exposed to time-varying turbulence and meteorological conditions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0733-8724
1558-2213
DOI:10.1109/JLT.2022.3164736