Command-Filter-Based Finite-Time Adaptive Control for Nonlinear Systems With Quantized Input

This article considers the finite-time adaptive control problem of nonlinear systems with quantized input signal. Compared with existing results, the quantized parameters are unknown and the bound of the disturbance is not required. By utilizing the command filter backstepping method, an adaptive sw...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 66; no. 5; pp. 2339 - 2344
Main Authors Ma, Jiali, Park, Ju H., Xu, Shengyuan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article considers the finite-time adaptive control problem of nonlinear systems with quantized input signal. Compared with existing results, the quantized parameters are unknown and the bound of the disturbance is not required. By utilizing the command filter backstepping method, an adaptive switching-type controller is designed and a novel switching mechanism is also proposed. By regulating the controller parameters online, practical finite-time stability can be guaranteed for the closed-loop system. Finally, a simulation example is given to illustrate the effectiveness of the proposed method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2020.3006283