Benchmarking Agility For Multilegged Terrestrial Robots

In this paper, we present a novel and practical approach for benchmarking agility. We focus on terrestrial, multilegged locomotion in the field of bio-inspired robotics. We define agility as the ability to perform a set of different but specific tasks executed in a fast and efficient manner. This de...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on robotics Vol. 35; no. 2; pp. 529 - 535
Main Authors Eckert, Peter, Ijspeert, Auke J.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we present a novel and practical approach for benchmarking agility. We focus on terrestrial, multilegged locomotion in the field of bio-inspired robotics. We define agility as the ability to perform a set of different but specific tasks executed in a fast and efficient manner. This definition is inspired by the analysis of natural role models, such as dogs and horses as well as robotic systems. An evaluation of existing benchmarks in robotics is done and taken into account in our proposed benchmark. After the general definition, the actual normalized benchmarking values are defined, and measuring methods, as well as an online database for agility score collection and distribution, are presented. To provide a baseline for agile locomotion, various videos of dog-agility competitions were analyzed and agility scores calculated wherever applicable. Finally, validation and implementation of the benchmark are done with different robots directly available to the authors. In conclusion, our benchmark will enable researchers not only to compare existing robots and find out strengths and weaknesses in different design approaches, but also give a tool to define new fitness functions for optimization, learning processes, and future robots developments, intensifying the links between biology and technology even further.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1552-3098
1941-0468
DOI:10.1109/TRO.2018.2888977