Relationships Between Modifiable Risk Factors of Hamstring Strain Injury

Ripley, NJ, Comfort, P, and McMahon, JJ. Relationships between modifiable risk factors of hamstring strain injury. J Strength Cond Res 38(3): 510-516, 2024-The aims of this study were to determine whether any relationship exists between eccentric hamstring strength and isokinetic strength imbalances...

Full description

Saved in:
Bibliographic Details
Published inJournal of strength and conditioning research Vol. 38; no. 3; p. 510
Main Authors Ripley, Nicholas J, Comfort, Paul, McMahon, John J
Format Journal Article
LanguageEnglish
Published United States 01.03.2024
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Ripley, NJ, Comfort, P, and McMahon, JJ. Relationships between modifiable risk factors of hamstring strain injury. J Strength Cond Res 38(3): 510-516, 2024-The aims of this study were to determine whether any relationship exists between eccentric hamstring strength and isokinetic strength imbalances and bicep femoris long head (BF LH ) architecture. Eighteen physically active men (age 24.7 ± 4.3 years, height 181.9 ± 7.2 cm, mass 84.9 ± 12.9 kg) had resting BF LH muscle architecture assessed using ultrasound, with images taken at the midmuscle belly. Measures of isokinetic strength of the knee extensors and flexors involved subjects performing 3 maximal effort repetitions of concentric knee extension and eccentric knee flexion at 60°·s -1 . Good-excellent relative reliability (intraclass correlation coefficient ≥0.86) and low variability (coefficient of variation <10%) were observed for all variables. Relative BF LH fascicle length (FL) demonstrated significant moderate-to-nearly-perfect associations with isokinetic measures identified as hamstring strain injury risk factors ( p < 0.05, r = 0.38-0.92), whereas absolute BF LH FL was not significantly or meaningfully associated with isokinetic measures ( p = 0.07-0.961, r = 0.01-0.30). Relative BF LH FL should be considered when assessing resting BF LH muscle architecture because it is potentially a more appropriate measure of injury risk because of its greater association with strength measures. However, absolute BF LH FL may have a greater usefulness during growth, maturation, and individual proportions.
ISSN:1064-8011
1533-4287
DOI:10.1519/JSC.0000000000004640