Unfreezing the robot: Navigation in dense, interacting crowds

In this paper, we study the safe navigation of a mobile robot through crowds of dynamic agents with uncertain trajectories. Existing algorithms suffer from the "freezing robot" problem: once the environment surpasses a certain level of complexity, the planner decides that all forward paths...

Full description

Saved in:
Bibliographic Details
Published in2010 IEEE/RSJ International Conference on Intelligent Robots and Systems pp. 797 - 803
Main Authors Trautman, Peter, Krause, Andreas
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2010
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we study the safe navigation of a mobile robot through crowds of dynamic agents with uncertain trajectories. Existing algorithms suffer from the "freezing robot" problem: once the environment surpasses a certain level of complexity, the planner decides that all forward paths are unsafe, and the robot freezes in place (or performs unnecessary maneuvers) to avoid collisions. Since a feasible path typically exists, this behavior is suboptimal. Existing approaches have focused on reducing the predictive uncertainty for individual agents by employing more informed models or heuristically limiting the predictive covariance to prevent this overcautious behavior. In this work, we demonstrate that both the individual prediction and the predictive uncertainty have little to do with the frozen robot problem. Our key insight is that dynamic agents solve the frozen robot problem by engaging in "joint collision avoidance": They cooperatively make room to create feasible trajectories. We develop IGP, a nonparametric statistical model based on dependent output Gaussian processes that can estimate crowd interaction from data. Our model naturally captures the non-Markov nature of agent trajectories, as well as their goal-driven navigation. We then show how planning in this model can be efficiently implemented using particle based inference. Lastly, we evaluate our model on a dataset of pedestrians entering and leaving a building, first comparing the model with actual pedestrians, and find that the algorithm either outperforms human pedestrians or performs very similarly to the pedestrians. We also present an experiment where a covariance reduction method results in highly overcautious behavior, while our model performs desirably.
ISBN:9781424466740
1424466741
ISSN:2153-0858
2153-0866
DOI:10.1109/IROS.2010.5654369