Plant Immune System: Crosstalk Between Responses to Biotic and Abiotic Stresses the Missing Link in Understanding Plant Defence

Environmental pollution, global warming and climate change exacerbate the impact of biotic and abiotic stresses on plant growth and yield. Plants have evolved sophisticated defence network, also called innate immune system, in response to ever- changing environmental conditions. Significant progress...

Full description

Saved in:
Bibliographic Details
Published inCurrent Issues in Molecular Biology Vol. 23; pp. 1 - 16
Main Authors Nejat, Naghmeh, Mantri, Nitin
Format Journal Article
LanguageEnglish
Published Switzerland 2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Environmental pollution, global warming and climate change exacerbate the impact of biotic and abiotic stresses on plant growth and yield. Plants have evolved sophisticated defence network, also called innate immune system, in response to ever- changing environmental conditions. Significant progress has been made in identifying the key stress-inducible genes associated with defence response to single stressors. However, relatively little information is available on the signaling crosstalk in response to combined biotic/abiotic stresses. Recent evidence highlights the complex nature of interactions between biotic and abiotic stress responses, significant aberrant signaling crosstalk in response to combined stresses and a degree of overlap, but unique response to each environmental stimulus. Further, the results of simultaneous combined biotic and abiotic stress studies indicate that abiotic stresses particularly heat and drought enhance plant susceptibility to plant pathogens. It is noteworthy that global climate change is predicted to have a negative impact on biotic stress resistance in plants. Therefore, it is vital to conduct plant transcriptome analysis in response to combined stresses to identify general or multiple stress- and pathogen-specific genes that confer multiple stress tolerance in plants under climate change. Here, we discuss the recent advances in our understanding of the molecular mechanisms of crosstalk in response to biotic and abiotic stresses. Pinpointing both, common and specific components of the signaling crosstalk in plants, allows identification of new targets and development of novel methods to combat biotic and abiotic stresses under global climate change.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ISSN:1467-3037
1467-3045
1467-3045
DOI:10.21775/cimb.023.001