Rapid determination of ETS markers with a prototype field-portable GC employing a microsensor array detector
The adaptation of a portable gas chromatograph (GC) prototype with several unique design features to the determination of vapor-phase markers of environmental tobacco smoke (ETS) is described. This instrument employs a dual-stage adsorbent preconcentrator, two series-coupled separation columns that...
Saved in:
Published in | Journal of environmental monitoring Vol. 9; no. 5; p. 440 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.05.2007
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | The adaptation of a portable gas chromatograph (GC) prototype with several unique design features to the determination of vapor-phase markers of environmental tobacco smoke (ETS) is described. This instrument employs a dual-stage adsorbent preconcentrator, two series-coupled separation columns that can be independently temperature programmed, and a detector consisting of an array of nanoparticle-coated chemiresistors, whose response patterns are used together with retention times for vapor recognition. An adsorbent pre-trap was developed to remove semi-volatile organics from the sample stream. Conditions were established to quantitatively capture two ETS markers, 2,5-dimethylfuran (2,5-DMF) and 4-ethenylpyridine (4-EP, as a surrogate for 3-EP), and to separate them from the 34 most prominent co-contaminants present in ETS using ambient air as the carrier gas. A complete analysis can be performed every 15 min. Projected detection limits are 0.58 and 0.08 ppb for 2,5-DMF and 4-EP, respectively, assuming a 1 L sample volume, which are sufficiently low to determine these markers in typical smoking-permitted environments. |
---|---|
ISSN: | 1464-0325 |
DOI: | 10.1039/b700216e |