Anti-Obesity Effect of Jeju Roasted Citrus Peel Extract in High-Fat Diet-Induced Obese Mice and 3T3-L1 Adipocytes Via Lipid Metabolism Regulation

Lipid accumulation in adipocytes occurs through multifactorial effects such as overnutrition due to unbalanced eating habits, reduced physical activity, and genetic factors. In addition, obesity can be intensified by the dis-regulation of various metabolic systems such as differentiation, lipogenesi...

Full description

Saved in:
Bibliographic Details
Published inJournal of medicinal food Vol. 27; no. 4; p. 369
Main Authors Bae, Subin, Kang, Seong-Il, Ko, Hee Chul, Park, Jeongjin, Jun, Woojin
Format Journal Article
LanguageEnglish
Published United States 01.04.2024
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Lipid accumulation in adipocytes occurs through multifactorial effects such as overnutrition due to unbalanced eating habits, reduced physical activity, and genetic factors. In addition, obesity can be intensified by the dis-regulation of various metabolic systems such as differentiation, lipogenesis, lipolysis, and energy metabolism of adipocytes. In this study, the Jeju roasted peel extract from S.Markov. (JRC), which is discarded as opposed to the pulp of S.Markov., is commonly consumed to ameliorate obesity. To investigate the anti-obesity effect of JRC, these studies were conducted on differentiated 3T3-L1 cells and in high-fat diet-induced mice, and related methods were used to confirm whether it decreased lipid accumulation in adipocytes. The mechanism of inhibiting obesity by JRC was confirmed through mRNA expression studies. JRC suppressed lipid accumulation in adipocytes and adipose tissue, and significantly improved enzymes such as alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyl transferase and serum lipid profiles. In addition, it effectively modulated the expression of genes related to lipid and energy metabolism in adipose tissue. As a result, these findings suggest that JRC could be a therapeutic regulator of body fat accumulation by significantly alleviating the dis-regulation of intracellular lipid metabolism in adipocytes and by enhancement of energy metabolism (Approval No. CNU IACUC-YB-2023-98).
ISSN:1557-7600
DOI:10.1089/jmf.2023.K.0299