DNA double-strand breaks induced along the trajectory of particles

It is well-known that the DNA damage caused by charged particles considerably differs from damage due to electromagnetic radiation. In the case of irradiation by charged particles the DNA lesions are more complex and clustered. Such clustered damage is presumed difficult to be repaired, and is poten...

Full description

Saved in:
Bibliographic Details
Published inNuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms Vol. 269; no. 24; pp. 3129 - 3131
Main Authors Cho, I.C., Niu, H., Chen, C.H., Yu, Y.C., Hsu, C.H.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.12.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:It is well-known that the DNA damage caused by charged particles considerably differs from damage due to electromagnetic radiation. In the case of irradiation by charged particles the DNA lesions are more complex and clustered. Such clustered damage is presumed difficult to be repaired, and is potentially lethal. In this study, we utilize a 90°-scattering system and related imaging techniques to investigate the accumulation of γ-H2AX along the trajectory of charged particles. By immunostaining the γ-H2AX protein, optical images of corresponding double strand breaks were observed using a high resolution confocal microscope. We demonstrate the difference in the accumulation of γ-H2AX from irradiation by 1 MeV protons and that of 150 keV X-rays. The acquired images were arranged and reconstructed into a 3D image using ImageJ software. We discovered that the γ-H2AX foci, following irradiation by protons, have a tendency to extend in the beam direction, while those from X-ray irradiation tend to be smaller and more randomly distributed. These results can be explained by the physical model of energy deposition.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0168-583X
1872-9584
DOI:10.1016/j.nimb.2011.04.099