A Review of Population-Based Metaheuristics for Large-Scale Black-Box Global Optimization-Part I

Scalability of optimization algorithms is a major challenge in coping with the ever-growing size of optimization problems in a wide range of application areas from high-dimensional machine learning to complex large-scale engineering problems. The field of large-scale global optimization is concerned...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on evolutionary computation Vol. 26; no. 5; pp. 802 - 822
Main Authors Omidvar, Mohammad Nabi, Li, Xiaodong, Yao, Xin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Scalability of optimization algorithms is a major challenge in coping with the ever-growing size of optimization problems in a wide range of application areas from high-dimensional machine learning to complex large-scale engineering problems. The field of large-scale global optimization is concerned with improving the scalability of global optimization algorithms, particularly, population-based metaheuristics. Such metaheuristics have been successfully applied to continuous, discrete, or combinatorial problems ranging from several thousand dimensions to billions of decision variables. In this two-part survey, we review recent studies in the field of large-scale black-box global optimization to help researchers and practitioners gain a bird's-eye view of the field, learn about its major trends, and the state-of-the-art algorithms. Part I of the series covers two major algorithmic approaches to large-scale global optimization: 1) problem decomposition and 2) memetic algorithms. Part II of the series covers a range of other algorithmic approaches to large-scale global optimization, describes a wide range of problem areas, and finally, touches upon the pitfalls and challenges of current research and identifies several potential areas for future research.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1089-778X
1941-0026
DOI:10.1109/TEVC.2021.3130838