Long-lasting anti-viral cytotoxic T lymphocytes induced in vivo with chimeric-multirestricted lipopeptides

Cytotoxic T lymphocytes (CTL) play a major role in protective immunity against viral diseases. However, the antigenic formulations that can be used in vaccinations able to generate virus-specific CTL responses in vivo have yet to be defined. We have previously shown that HIV-1-specific CTL can be el...

Full description

Saved in:
Bibliographic Details
Published inVaccine Vol. 13; no. 14; pp. 1339 - 1345
Main Authors Sauzet, Jean-Pierre, Déprez, Benoit, Martinon, Frédéric, Guillet, Jean-Gérard, Gras-Masse, Hélène, Gomard, Elisabeth
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 1995
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cytotoxic T lymphocytes (CTL) play a major role in protective immunity against viral diseases. However, the antigenic formulations that can be used in vaccinations able to generate virus-specific CTL responses in vivo have yet to be defined. We have previously shown that HIV-1-specific CTL can be elicited in mice by injecting without adjuvant a synthetic peptide of the envelope glycoprotein that has been modified by the addition of a simple lipid tail to the end of the sequence (lipopeptide). The present study set out to address the question of whether such immunogens may be appropriate for preparing a human synthetic vaccine. We first showed that CTL were effectively induced by lipopeptides when given s.c. or i.p. We evidenced that the in vivo induction required stimulation of a concomitant specific T helper cell response, implying the presence of at least one CD4 epitope in the synthetic sequence used. Bearing in mind the particular properties that would be required in a prospective human peptide vaccine, we conceived a strategy in which a virus-specific CTL response could be generated in mice of different haplotypes using a single lipopeptide. We therefore tested a lipopeptide construct that integrated a synthetic sequence having three colinear epitopes of the influenza virus nucleoprotein, each restricted to a different H-2 haplotype. We found that a CTL response could be elicited to all three epitopes of this chimeric multirestricted lipopeptide construct. Finally, we have attempted to estimate the duration of the responses; strong CTL activities were still present up to six months after the last injection. These findings indicate that this approach may be suitable for developing a synthetic vaccine for human use.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0264-410X
1873-2518
DOI:10.1016/0264-410X(94)00087-4