Molecular cloning, in vitro expression and characterization of a plant squalene synthetase cDNA

Squalene synthetase (farnesyl-diphosphate:farnesyl-diphosphate farnesyltransferase, EC 2.5.1.21) catalyzes the first committed step for sterol biosynthesis and is thought to play an important role in the regulation of isoprenoid biosynthesis in eukaryotes. Using degenerate oligonucleotides based on...

Full description

Saved in:
Bibliographic Details
Published inPlant molecular biology Vol. 30; no. 6; p. 1139
Main Authors Hanley, K.M. (Biosource Technologies Inc., Vacaville, CA (USA)), Nicolas, O, Donaldson, T.B, Smith-Monroy, C, Robinson, G.W, Hellmann, G.M
Format Journal Article
LanguageEnglish
Published Netherlands 01.03.1996
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Squalene synthetase (farnesyl-diphosphate:farnesyl-diphosphate farnesyltransferase, EC 2.5.1.21) catalyzes the first committed step for sterol biosynthesis and is thought to play an important role in the regulation of isoprenoid biosynthesis in eukaryotes. Using degenerate oligonucleotides based on a conserved region found in yeast and human squalene synthetase genes, a cDNA was cloned from the plant Nicotiana benthamiana. The cloned cDNA contained an open reading frame of 1234 bp encoding a polypeptide of 411 amino acids (M(r) 47002). Northern blot analysis of poly(A)+ mRNA from N. benthamiana and N. tabacum cv. MD609 revealed a single band of ca. 1.6 kb in both Nicotiana species. The identity and functionality of the cloned plant squalene synthetase cDNA was further confirmed by expression of the cDNA in Escherichia coli and in a squalene synthetase-deficient erg9 mutant of Saccharomyces cerevisiae. Antibodies raised against a truncated form of the protein recognized an endogenous plant protein of appropriate size as well as the full-length bacterially expressed protein as detected by western analysis. Comparison of the deduced primary amino acid sequences of plant, yeast, rat and human squalene synthetase revealed regions of conservation that may indicate similar functions within each polypeptide.
Bibliography:F30
9700177
ISSN:0167-4412
1573-5028
DOI:10.1007/BF00019548