Neutron imaging inspections of composite honeycomb adhesive bonds

Numerous commercial and military aircraft, including the Canadian Forces CF188 Hornet, use composite honeycomb structures in the design of their flight control surfaces (FCS). These structures provide excellent strength to weight ratios, but are often susceptible to degradation from moisture ingress...

Full description

Saved in:
Bibliographic Details
Published inNuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Vol. 651; no. 1; pp. 250 - 252
Main Authors Hungler, P.C., Bennett, L.G.I., Lewis, W.J., Schulz, M., Schillinger, B.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 21.09.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Numerous commercial and military aircraft, including the Canadian Forces CF188 Hornet, use composite honeycomb structures in the design of their flight control surfaces (FCS). These structures provide excellent strength to weight ratios, but are often susceptible to degradation from moisture ingress. Once inside the honeycomb structure moisture causes the structural adhesive bonds to weaken, which can lead to complete failure of the FCS in flight. There are two critical structural adhesive bonds: the node bond and the filet bond. The node bond is integral to the honeycomb portion of the composite core and is located between the honeycomb cells. The filet bond is the adhesive bond located between the skin and the core. In order to asses overall structural degradation and develop repair procedures, it is important to determine the degree of degradation in each type of bond. Neutron radiography and tomography of the adhesive bonds was conducted at the Royal Military College (RMC) and FRM-II. Honeycomb samples were manufactured from FCS with in-service water ingress. The radiographs and tomograms provided important information about the degree of degradation in the core as well as about which adhesive bonds are more susceptible. The information obtained from this study will help to develop repair techniques and assess the flight worthiness of FCS.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0168-9002
1872-9576
DOI:10.1016/j.nima.2011.01.104