Rate coefficients for the reactions of OH with butanols from 298 K to temperatures relevant for low‐temperature combustion

Rate coefficients for the reactions of OH with n, s, and iso‐butanol have been measured over the temperature range 298 to ∼650 K. The rate coefficients display significant curvature over this temperature range and bridge the gap between previous low‐temperature measurements with a negative temperatu...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of chemical kinetics Vol. 52; no. 12; pp. 1046 - 1059
Main Authors Sime, Samantha L., Blitz, Mark A., Seakins, Paul W.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Rate coefficients for the reactions of OH with n, s, and iso‐butanol have been measured over the temperature range 298 to ∼650 K. The rate coefficients display significant curvature over this temperature range and bridge the gap between previous low‐temperature measurements with a negative temperature dependence and higher temperature shock tube measurements that have a positive temperature dependence. In combination with literature data, the following parameterizations are recommended: k1,OH + n‐butanol(T) = (3.8 ± 10.4) × 10−19T2.48 ± 0.37exp ((840 ± 161)/T) cm3 molecule−1 s−1 k2,OH + s‐butanol(T) = (3.5 ± 3.0) × 10−20T2.76 ± 0.12exp ((1085 ± 55)/T) cm3 molecule−1 s−1 k3,OH + i‐butanol(T) = (5.1 ± 5.3) × 10−20T2.72 ± 0.14exp ((1059 ± 66)/T) cm3 molecule−1 s−1 k4,OH + t‐butanol(T) = (8.8 ± 10.4) × 10−22T3.24 ± 0.15exp ((711 ± 83)/T) cm3 molecule−1 s−1 Comparison of the current data with the higher shock tube measurements suggests that at temperatures of ∼1000 K, the OH yields, primarily from decomposition of β‐hydroxyperoxy radicals, are ∼0.3 (n‐butanol), ∼0.3 (s‐butanol) and ∼0.2 (iso‐butanol) with β‐hydroxyperoxy decompositions generating OH, and a butene as the main products. The data suggest that decomposition of β‐hydroxyperoxy radicals predominantly occurs via OH elimination.
ISSN:0538-8066
1097-4601
DOI:10.1002/kin.21422