Tilings in randomly perturbed graphs: Bridging the gap between Hajnal‐Szemerédi and Johansson‐Kahn‐Vu

A perfect Kr‐tiling in a graph G is a collection of vertex‐disjoint copies of Kr that together cover all the vertices in G. In this paper we consider perfect Kr‐tilings in the setting of randomly perturbed graphs; a model introduced by Bohman, Frieze, and Martin [7] where one starts with a dense gra...

Full description

Saved in:
Bibliographic Details
Published inRandom structures & algorithms Vol. 58; no. 3; pp. 480 - 516
Main Authors Han, Jie, Morris, Patrick, Treglown, Andrew
Format Journal Article
LanguageEnglish
Published New York John Wiley & Sons, Inc 01.05.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A perfect Kr‐tiling in a graph G is a collection of vertex‐disjoint copies of Kr that together cover all the vertices in G. In this paper we consider perfect Kr‐tilings in the setting of randomly perturbed graphs; a model introduced by Bohman, Frieze, and Martin [7] where one starts with a dense graph and then adds m random edges to it. Specifically, given any fixed 0<α<1−1/r we determine how many random edges one must add to an n‐vertex graph G of minimum degree δ(G)≥αn to ensure that, asymptotically almost surely, the resulting graph contains a perfect Kr‐tiling. As one increases α we demonstrate that the number of random edges required “jumps” at regular intervals, and within these intervals our result is best‐possible. This work therefore closes the gap between the seminal work of Johansson, Kahn and Vu [25] (which resolves the purely random case, that is, α=0) and that of Hajnal and Szemerédi [18] (which demonstrates that for α≥1−1/r the initial graph already houses the desired perfect Kr‐tiling).
Bibliography:Funding information
Leverhulme Trust Study Abroad Studentship, Grant/Award Number: SAS‐2017‐052∖9 (P.M.); Engineering and Physical Sciences Research Council (EPSRC),EP/M016641/1 (A.T.)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1042-9832
1098-2418
DOI:10.1002/rsa.20981