Selective inhibition of sphingosine kinase-1 protects adipose tissue against LPS-induced inflammatory response in Zucker diabetic fatty rats

Obesity is associated with a state of chronic inflammation. The chemokine (C-C motif) ligand 5 (CCL5) has been proposed to modulate the inflammatory response in adipose tissue (AT). However, the mechanisms underlying CCL5 upregulation in AT remain undefined. The objective of the present study was to...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology: endocrinology and metabolism Vol. 307; no. 5; pp. E437 - E446
Main Authors Tous, Monica, Ferrer-Lorente, Raquel, Badimon, Lina
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.09.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Obesity is associated with a state of chronic inflammation. The chemokine (C-C motif) ligand 5 (CCL5) has been proposed to modulate the inflammatory response in adipose tissue (AT). However, the mechanisms underlying CCL5 upregulation in AT remain undefined. The objective of the present study was to evaluate whether the enzyme sphingosine kinase-1 (SK1) would modulate the expression of CCL5 and other inflammatory biomarkers in primary adipocytes and its potential role in lipopolysaccharide (LPS)-induced AT inflammation in a rat model of diabetes. To address this, LPS-stimulated primary adipocytes and 3T3-L1 cells were treated with a SK inhibitor, and the expression of Ccl5 and other CC chemokines were studied. Moreover, the effect of SK1 knockdown on cytokine production was analyzed in 3T3-L1 cells by transfection of SK1-specific small-interfering RNA (siRNA). The anti-inflammatory effects of SK inhibitor in AT were also investigated in vivo using the Zucker lean normoglycemic control (ZLC) rats. LPS treatment stimulated Ccl5, IL-6, pentraxin 3 (Ptx3), and Tnfα mRNA expression in primary adipocytes and 3T3-L1 cells, whereas pharmacologically and siRNA-mediated SK1 inhibition strongly reduced mRNA levels of proinflammatory cytokines in these cells. Similarly, administration of SK inhibitor to ZLC rats prevented the LPS-induced inflammatory response in AT. Our data demonstrate a role for SK1 in endotoxin-induced cytokine expression in adipocytes and suggest that inhibition of SK1 may be a potential therapeutic tool in the prevention and treatment of chronic and common metabolic disorders, including obesity, insulin-resistance, and type 2 diabetes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0193-1849
1522-1555
DOI:10.1152/ajpendo.00059.2014